Citations


Contact Us

For Marketing, Sales and Subscriptions Inquiries
Rockefeller Center, 45 Rockefeller Plaza
20th Flr Unit #5, New York, NY 10111
United States

Conference List

International Journal of Sustainable Agricultural Research

December 2020, Volume 7, 4, pp 211-227

Interactive Effects of Arbuscular Mycorrhizal Fungi and Rhizobium on Growth and Nutrient Content of Arachis hypogaea

Surinder Kaur

,

Priyanka Singla

,

Shruti .

,

Muskaan .

Surinder Kaur 1 ,

Priyanka Singla 1 Shruti . 1 Muskaan . 1 
  1. Department of Botany, SGTB Khalsa College, University of Delhi, Delhi, India. 1

Pages: 211-227

DOI: 10.18488/journal.70.2020.74.211.227

Share :

Article History:

Received: 26 May, 2020
Revised: 29 June, 2020
Accepted: 04 August, 2020
Published: 31 August, 2020


Abstract:

The present study was intended to investigate individual and interactive effects of Funneliformis mosseae (an arbuscular mycorrhizal fungus) and Rhizobium (a root nodulating bacterium) on growth and yield of groundnut growing under natural conditions. Plants growing in arbuscular mycorrhiza (AM) and/or Rhizobium inoculated soil exhibited superior growth, fitness and yield. Improvement in plant growth due to microbial inoculations had a significant correlation with their response to mycorrhization, relative water content, chlorophyll content, nutrient uptake, and antioxidant activity. The increase in all parameters except N acquisition and protein concentration was significantly higher on the formation of AM than rhizobial inoculation, albeit their combination displayed synergism to uplift metabolism and yield of host legume. Thus, the study indicated that synergistic behavior among microorganisms (AM and Rhizobium) had the most affirmative effects on the growth and harvest index of groundnut variety - TG37A and helped plants to thrive better in soils without chemical fertilizers.
Contribution/ Originality
This study contributes to the existing literature of tolerance aptitude of groundnut variety - TG37A against existing adverse environment. This study also documents the importance of AM and Rhizobium in improving the growth and metabolism of this variety.

Keywords:

Arachis hypogaea L., Bradyrhizobium Funneliformis mosseae, Growth, Nodulation, Yield.

Reference:

Abbaspour, H., Saeidi-Sar, S., Afshari, H., & Abdel-Wahhab, M. (2012). Tolerance of mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. Journal of Plant Physiology, 169(7), 704-709.

Abdel Latef, A. A. H., & Miransari, M. (2014). The role of arbuscular mycorrhizal fungi in alleviation of salt stress. In: Use of microbes for the alleviation of soil stresses, (Ed.) Miransari, M (pp. 23-38). New York: Springer Science Business Media.

Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126. Available at: 10.1016/s0076-6879(84)05016-3.

Afkhami, M. E., Rudgers, J. A., & Stachowicz, J. J. (2014). Multiple mutualist effects: Conflict and synergy in multispecies mutualisms. Ecology, 95(4), 833-844. Available at: https://doi.org/10.1890/13-1010.1.

Akhtar, M. S., Siddiqui, Z. A., & Wiemken, A. (2011). Arbuscular mycorrhizal fungi and rhizobium to control plant fungal diseases. In: Alternative farming systems, biotechnology, drought stress and ecological fertilization. 263-292.

Alguacil, M., Hernandez, J., Caravaca, F., Portillo, B., & Roldan, A. (2003). Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiologia Plantarum, 118(4), 562-570. Available at: https://doi.org/10.1034/j.1399-3054.2003.00149.x.

Allen, S. F., Grimshaw, H. F., & Rowl, A. B. (1984). Chemical analysis. In: Methods in plant ecology, (Eds) Moor, P.D. and Chapman, S.B (pp. 185-344). Oxford: Blackwell.

Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. Available at: https://doi.org/10.1104/pp.24.1.1.

Aroca, R., Porcel, R., & Ruiz‐Lozano, J. M. (2007). How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytologist, 173(4), 808-816. Available at: https://doi.org/10.1111/j.1469-8137.2006.01961.x.

Bauer, J. T., Kleczewski, N. M., Bever, J. D., Clay, K., & Reynolds, H. L. (2012). Nitrogen-fixing bacteria, arbuscular mycorrhizal fungi, and the productivity and structure of prairie grassland communities. Oecologia, 170(4), 1089-1098. Available at: https://doi.org/10.1007/s00442-012-2363-3.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. Available at: https://doi.org/10.1016/0003-2697(76)90527-3.

Castillo, F. J., Penel, C., & Greppin, H. (1984). Peroxidase release induced by ozone in Sedum album leaves: Involvement of Ca2+. Plant Physiology, 74(4), 846-851. Available at: https://doi.org/10.1104/pp.74.4.846.

Chandrasekaran, M., Boughattas, S., Hu, S., Oh, S.-H., & Sa, T. (2014). A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza, 24(8), 611-625. Available at: https://doi.org/10.1007/s00572-014-0582-7.

Cicatelli, A., Lingua, G., Todeschini, V., Biondi, S., Torrigiani, P., & Castiglione, S. (2012). Arbuscular mycorrhizal fungi modulate the leaf transcriptome of a Populus alba L. clone grown on a zinc and copper-contaminated soil. Environmental and Experimental Botany, 75, 25-35. Available at: https://doi.org/10.1016/j.envexpbot.2011.08.012.

Clúa, J., Roda, C., Zanetti, M. E., & Blanco, F. A. (2018). Compatibility between legumes and rhizobia for the establishment of a successful nitrogen-fixing symbiosis. Genes, 9(3), 1-21. Available at: https://doi.org/10.3390/genes9030125.

Dalpé, Y., & Monreal, M. (2004). Arbuscular mycorrhiza inoculum to support sustainable cropping systems. Crop Management, 3(1), 1-11. Available at: https://doi.org/10.1094/cm-2004-0301-09-rv.

Dardanelli, M. S., de Cordoba, F. J. F., Espuny, M. R., Carvajal, M. A. R., Díaz, M. E. S., Serrano, A. M. G., . . . Megías, M. (2008). Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biology and Biochemistry, 40(11), 2713-2721. Available at: https://doi.org/10.1016/j.soilbio.2008.06.016.

Dhindsa, R. S., Plumb-Dhindsa, P., & Thorpe, T. A. (1981). Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32(1), 93-101. Available at: https://doi.org/10.1093/jxb/32.1.93.

Evelin, H., Giri, B., & Kapoor, R. (2012). Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza, 22(3), 203-217. Available at: https://doi.org/10.1007/s00572-011-0392-0.

Fellbaum, C. R., Gachomo, E. W., Beesetty, Y., Choudhari, S., Strahan, G. D., Pfeffer, P. E., . . . Bücking, H. (2012). Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences, 109(7), 2666-2671. Available at: https://doi.org/10.1073/pnas.1118650109.

Geng, L.-L., Shao, G.-X., Raymond, B., Wang, M.-L., Sun, X.-X., Shu, C.-L., & Zhang, J. (2018). Subterranean infestation by Holotrichia parallela larvae is associated with changes in the peanut (Arachis hypogaea L.) rhizosphere microbiome. Microbiological Research, 211, 13-20. Available at: https://doi.org/10.1016/j.micres.2018.02.008.

Ghosh, D., & Xu, J. (2014). Abiotic stress responses in plant roots: A proteomics perspective. Frontiers in Plant Science, 5, 6.

Gibson, K. E., Kobayashi, H., & Walker, G. C. (2008). Molecular determinants of a symbiotic chronic infection. Annual review of Genetics, 42, 413-441. Available at: https://doi.org/10.1146/annurev.genet.42.110807.091427.

Goss, M., & De Varennes, A. (2002). Soil disturbance reduces the efficacy of mycorrhizal associations for early soybean growth and N2 fixation. Soil Biology and Biochemistry, 34(8), 1167-1173. Available at: https://doi.org/10.1016/s0038-0717(02)00053-6.

Gould, K. S., & Lister, C. (2005). Flavonoid functions in plants. In: Flavonoids: Chemistry, biochemistry, and applications (eds.) Anderson, O.M. and Markham, K.R (pp. 397-441). Boca Raton: CRC.

Guether, M., Neuhäuser, B., Balestrini, R., Dynowski, M., Ludewig, U., & Bonfante, P. (2009). A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiology, 150(1), 73-83. Available at: https://doi.org/10.1104/pp.109.136390.

Habte, M., & Osorio, N. W. (2001). Arbuscular mycorrhizas: Producing and applying arbuscular mycorrhizal inoculum. Department of Tropical Plant and Soil Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii, Monoa.

Hajiboland, R., Aliasgharzadeh, N., Laiegh, S. F., & Poschenrieder, C. (2010). Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant and Soil, 331(1-2), 313-327. Available at: https://doi.org/10.1007/s11104-009-0255-z.

Hammer, E. C., Pallon, J., Wallander, H., & Olsson, P. A. (2011). Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMS Microbiology Ecology, 76(2), 236-244. Available at: https://doi.org/10.1111/j.1574-6941.2011.01043.x.

Hartree, E. F. (1957). Haematin compounds. In: Modern methods of plant analysis, (eds.) Paech, K. and Tracey, M.V. (pp. 197-245). Berlin: Springer-Verlag, Germany.

Hiscox, J., & Israelstam, G. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57(12), 1332-1334. Available at: https://doi.org/10.1139/b79-163.

Jackson, M. L. (1973). Soil chemical analysis (pp. 485). New Delhi: Printice Hall.

Jensen, E. S., Peoples, M. B., Boddey, R. M., Gresshoff, P. M., Hauggaard-Nielsen, H., Alves, B. J. R., & Morrison, M. J. (2012). Legumes for mitigation of climate change and feedstock in a bio-based economy – A review. Agronomy for Sustainable Development, 32, 329-364. Available at: doi.org/10.1007/s13593-011-0056-7.

Kapoor, R., Sharma, D., & Bhatnagar, A. (2008). Arbuscular mycorrhizae in micropropagation systems and their potential applications. Scientia Horticulturae, 116(3), 227-239. Available at: https://doi.org/10.1016/j.scienta.2008.02.002.

Khalil, H. A., Eissa, A. M., El-Shazly, S. M., & Nasr, A. M. A. (2011). Improved growth of salinity-stressed citrus after inoculation with mycorrhizal fungi. Scientia Horticulturae, 130(3), 624-632. Available at: https://doi.org/10.1016/j.scienta.2011.08.019.

Kothari, S., Marschner, H., & George, E. (1990). Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize. New Phytologist, 116(2), 303-311. Available at: https://doi.org/10.1111/j.1469-8137.1990.tb04718.x.

Krishna, G., Singh, B. K., Kim, E.-K., Morya, V. K., & Ramteke, P. W. (2015). Progress in genetic engineering of peanut (Arachis hypogaea L.)—A review. Plant Biotechnology Journal, 13(2), 147-162.

Leport, L., Turner, N. C., Davies, S., & Siddique, K. (2006). Variation in pod production and abortion among chickpea cultivars under terminal drought. European Journal of Agronomy, 24(3), 236-246. Available at: https://doi.org/10.1016/j.eja.2005.08.005.

Lindner, R. (1944). Rapid analytical methods for some of the more common inorganic constituents of plant tissues. Plant Physiology, 19(1), 76-89. Available at: https://doi.org/10.1104/pp.19.1.76.

Lucas, J. A., García-Cristobal, J., Bonilla, A., Ramos, B., & Gutierrez-Manero, J. (2014). Beneficial rhizobacteria from rice rhizosphere confers high protection against biotic and abiotic stress inducing systemic resistance in rice seedlings. Plant Physiology and Biochemistry, 82, 44-53. Available at: https://doi.org/10.1016/j.plaphy.2014.05.007.

McGonigle, T., Miller, M., Evans, D., Fairchild, G., & Swan, J. (1990). A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytologist, 115(3), 495-501. Available at: https://doi.org/10.1111/j.1469-8137.1990.tb00476.x.

Mehlich, A. (1953). Determination of P, Ca, Mg, K, Na and NH4. Short Test Methods Used in Soil Testing Division, Department of Agriculture, North Carolina Soil Testing Division, Raleigh, North Carolina.

Miransari, M. (2011). Soil microbes and plant fertilization. Applied Microbiology and Biotechnology, 92(5), 875-885. Available at: https://doi.org/10.1007/s00253-011-3521-y.

Mukherjee, A., & Ané, J.-M. (2011). Germinating spore exudates from arbuscular mycorrhizal fungi: Molecular and developmental responses in plants and their regulation by ethylene. Molecular Plant-Microbe Interactions, 24(2), 260-270. Available at: https://doi.org/10.1094/mpmi-06-10-0146.

Nelson, D. W., & Sommers, L. (1973). Determination of total nitrogen in plant material 1. Agronomy Journal, 65(1), 109-112.

Olsen, S. R., & Sommers, L. E. (1982). Phosphorus. In: Methods of soil analysis, Agron. No. 9, Part 2-Chemical and microbiological properties, (ed.) Page, A.L (2nd ed., pp. 403-430). Madison, Wisconsin, USA: American Society of Agronomy.

Parniske, M. (2008). Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nature Reviews Microbiology, 6(10), 763-775. Available at: https://doi.org/10.1038/nrmicro1987.

Patel, D., & Saraf, M. (2013). Influence of soil ameliorants and microflora on induction of antioxidant enzymes and growth promotion of Jatropha curcas L. under saline condition. European Journal of Soil Biology, 55, 47-54. Available at: https://doi.org/10.1016/j.ejsobi.2012.12.004.

Patreze, C. M., & Cordeiro, L. (2004). Nitrogen-fixing and vesicular–arbuscular mycorrhizal symbioses in some tropical legume trees of tribe Mimoseae. Forest Ecology and Management, 196(2-3), 275-285. Available at: https://doi.org/10.1016/j.foreco.2004.03.034.

Phillips, J. M., & Hayman, D. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1), 158-161. Available at: https://doi.org/10.1016/s0007-1536(70)80110-3.

Raupach, G. S., & Kloepper, J. W. (1998). Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology, 88(11), 1158-1164. Available at: https://doi.org/10.1094/phyto.1998.88.11.1158.

Rotaru, V., & Sinclair, T. R. (2009). Interactive influence of phosphorus and iron on nitrogen fixation by soybean. Environmental and Experimental Botany, 66(1), 94-99. Available at: https://doi.org/10.1016/j.envexpbot.2008.12.001.

Ruiz-Lozano, J. M., Porcel, R., Azcón, C., & Aroca, R. (2012). Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: New challenges in physiological and molecular studies. Journal of Experimental Botany, 63(11), 4033-4044. Available at: https://doi.org/10.1093/jxb/ers126.

Sakamoto, K., Ogiwara, N., & Kaji, T. (2013). Involvement of autoregulation in the interaction between rhizobial nodulation and AM fungal colonization in soybean roots. Biology and Fertility of Soils, 49(8), 1141-1152. Available at: https://doi.org/10.1007/s00374-013-0804-8.

Samal, K. C., & Rout, G. R. (2018). Genetic improvement of vegetables using transgenic technology. In: Genetic engineering of horticultural crops (pp. 193-224): Academic Press.

Sathiyabama, M., & Balasubramanian, R. (2018). Protection of groundnut plants from rust disease by application of glucan isolated from a biocontrol agent Acremonium obclavatum. International Journal of Biological Macromolecules, 116, 316-319. Available at: https://doi.org/10.1016/j.ijbiomac.2018.04.190.

Schüβler, A., & Walker, C. (2010). The glomeromycota: A species list with new families and genera. Edinburgh & Kew, UK, The Royal Botanic Garden; Munich, Germany: Botanische staatssammlung munich and oregon. USA: Oregon State University.

Senoo, K., Solaiman, M. Z., Kawaguchi, M., Imaizumi-Anraku, H., Akao, S., Tanaka, A., & Obata, H. (2000). Isolation of two different phenotypes of mycorrhizal mutants in the model legume plant lotus japonicus after EMS-treatment. Plant and Cell Physiology, 41(6), 726-732. Available at: https://doi.org/10.1093/pcp/41.6.726.

Sharma, K. K., & Bhatnagar-Mathur, P. (2006). Peanut (arachis hypogaea L.), In: Agrobacterium protocols. Methods in molecular biology, (ed.) wang, K (Vol. 343, pp. 347-358). New Jersey: Springer.

Sheng, M., Tang, M., Chen, H., Yang, B., Zhang, F., & Huang, Y. (2008). Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18(6-7), 287-296. Available at: https://doi.org/10.1007/s00572-008-0180-7.

Singh, P. K. (2012). Role of glomalin related soil protein produced by arbuscular mycorrhizal fungi: A review. Academic Research Journal of Agricultural Science, 2(3), 119-125.

Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis. San Diego, CA: Academic Press, Inc.

Smith, S. E., Facelli, E., Pope, S., & Smith, F. A. (2010). Plant performance in stressful environments: Interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant and Soil, 326(1-2), 3-20. Available at: https://doi.org/10.1007/s11104-009-9981-5.

Smith, S. E., Jakobsen, I., Grønlund, M., & Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology, 156(3), 1050-1057. Available at: https://doi.org/10.1104/pp.111.174581.

Takeda, N., Tsuzuki, S., Suzaki, T., Parniske, M., & Kawaguchi, M. (2013). CERBERUS and NSP1 of Lotus japonicus are common symbiosis genes that modulate arbuscular mycorrhiza development. Plant and Cell Physiology, 54(10), 1711-1723. Available at: https://doi.org/10.1093/pcp/pct114.

Thangella, P., Pasumarti, S., Pullakhandam, R., Geereddy, B., & Daggu, M. (2018). Differential expression of leaf proteins in four cultivars of peanut (arachis hypogaea L.) under water stress. 3 Biotech, 8(3), 157-157. Available at: https://doi.org/10.1007/s13205-018-1180-8.

Tian, C., Kasiborski, B., Koul, R., Lammers, P. J., Bücking, H., & Shachar-Hill, Y. (2010). Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: Gene characterization and the coordination of expression with nitrogen flux. Plant Physiology, 153(3), 1175-1187. Available at: https://doi.org/10.1104/pp.110.156430.

Van der Putten, W. H., Klironomos, J. N., & Wardle, D. A. (2007). Microbial ecology of biological invasions. The ISME Journal, 1(1), 28-37.

Walkley, A. (1947). A critical examination of a rapid method for determining organic carbon in soils—effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63(4), 251-264. Available at: https://doi.org/10.1097/00010694-194704000-00001.

Weatherley, P. (1950). Studies in the water relations of the cotton plant. I. The field measurement of water deficits in leaves. New Phytologist, 49(1), 81-97. Available at: https://doi.org/10.1111/j.1469-8137.1950.tb05146.x.

Wu, Q.-S., Zou, Y.-N., & He, X.-H. (2010). Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiologiae Plantarum, 32(2), 297-304. Available at: https://doi.org/10.1007/s11738-009-0407-z.

Xie, Z.-P., Staehelin, C., Vierheilig, H., Wiemken, A., Jabbouri, S., Broughton, W. J., . . . Boller, T. (1995). Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans. Plant Physiology, 108(4), 1519-1525. Available at: https://doi.org/10.1104/pp.108.4.1519.

Yol, E., Furat, S., Upadhyaya, H. D., & Uzun, B. (2018). Characterization of groundnut (Arachis hypogaea L.) collection using quantitative and qualitative traits in the Mediterranean Basin. Journal of Integrative Agriculture, 17(1), 63-75.

Zai, X., Qin, P., Wan, S., Zhao, F., Wang, G., Yan, D., & Zhou, J. (2007). Effects of arbuscular mycorrhizal fungi on the rooting and growth of beach plum (Prunus maritima) cuttings. The Journal of Horticultural Science and Biotechnology, 82(6), 863-866. Available at: ttps://doi.org/10.1080/14620316.2007.11512319.

Zhu, Y.-G., Smith, S. E., Barritt, A., & Smith, F. A. (2001). Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant and Soil, 237(2), 249-255.

Statistics:

Google Scholor ideas Microsoft Academic Search bing Google Scholor

Funding:

This study received no specific financial support.

Competing Interests:

The authors declare that they have no competing interests.

Acknowledgement:

Authors gratefully acknowledge Science and Research Centre, SGTB Khalsa College, University of Delhi, Delhi, India for awarding fiscal support in undertaking this Summer Research Project. Authors gratefully acknowledge Directorate of Groundnut Research, Junagadh, Gujrat for providing Groundnut cultivar (TG37A: A Spanish groundnut cultivar) alongwith its specific Rhizobial culture (TAL1000) and Centre for Mycorrhizal Culture Collection, The Energy and Resource Institute (T.E.R.I.), New Delhi for providing pure cultures of Funneliformis mosseae. Authors are highly thankful to Dr. Roopam Kapoor, Department of Botany, University of Delhi, for her invariable support.

Related Article

( 1 ) Interactive Effects of Arbuscular Mycorrhizal Fungi and Rhizobium on Growth and Nutrient Content of Arachis hypogaea
( 2 ) Interactive Effects of Zinc-Arbuscular Mycorrhizal (AM) Fungi on Cadmium Uptake, Rubisco, Osmolyte Synthesis and Yield in Cajanus cajan (L.) Millsp.
( 3 ) Effects of Cotton Gin Trash Level on the Performance of Desert Lambs in New Halfa Area, Kassala State, Sudan
( 4 ) Effects of Age at Fattening On Butana Camel Males Carcass Characteristics in the Sudan
( 5 ) Germination Effects of Purposive Bruchid Screening of African Ebony (Dalbergia Melanoxylon) Seeds In the Arid and Semi-Arid Region of South Eastern Kenya
( 6 ) Effects of Ebola (EVD) Outbreak on Bush Meat Marketing and Consumption in Ibarapa Central Local Government Area of Oyo State, Nigeria
( 7 ) Effects of Degasified Extender on Quality Parameters of Cryopreserved Bull Spermatozoa
( 8 ) Effects of Dried Rumen Contents Level in Rations on the Performance of Shugor Desert Sheep in Halfa Elgadeda, Kassala State, Sudan
( 9 ) Physiological Effects of Some Artificial and Natural Food Coloring on Young Male Albino Rats
( 10 ) Protective Effects of Sweet Orange Peel (Citrus Sinensis L.) The Induction of Micronuclei Induced by Cyclophosphamide in Human Peripheral Lymphocytes
( 11 ) Analysis of Climate Change Effects among Rice Farmers in Benue State, Nigeria
( 12 ) The Effects of Magnetic Field on Germination of Seeds and Growth of Seedlings of Stone Pine
( 13 ) Effects of Segregated Early Weaning at 7 Days on Dams Body Condition, Parturition Interval and Offspring Birth Weight and Litter Size in the Agouti (Dasyprocta Leporina) for Intensive Production
( 14 ) Rural Farmers’ Coping Strategies to Effects of Climate Change on Watermelon Production in Igboora, Oyo State, Nigeria
( 15 ) Effects of Different Storage Conditions on Rooting and Shooting Performance of Grapevine (Vitis Vinifera L.) Cuttings in Hydroponic Culture System
( 16 ) Effects of Community Financing Institutions on Cassava Farmers Income in Oyo State, Nigeria
( 17 ) Effects of Inclusion of Processed Grapefruit Pulp on Wheat Flour Biscuit
( 18 ) Effects of Melon Seed or Soybean Meal Supplementation on the Physicochemical and Sensory Properties of Incompletely Peeled Cassava Garri
( 20 ) Storage Effects on Microbiological and Some Antioxidant Potentials of Partially Substituted Bread Produced from Wheat Flour and Fresh Coconut Meat
( 21 ) Assessment of the Processing Effects of Fresh Solanum Anguivi Berries on Biochemical Contents and Functional Properties of Powder
( 22 ) Preservative Effects of Ginger (Zingiber officinale), Tumeric (Curcuma longa) Extract and Citric Acid and Pasteurization on the Nutritional Quality and Shelf Life of Tiger-Nut Non-Dairy Milk
( 24 ) Prevalence of Subclinical Mastitis and its Effects on Reproductive Performance in Dairy Cows during the Postpartum Period in Gasabo District, Rwanda
( 27 ) Improvement of Maize Productivity (Zea Mays L.) by Mycorrhizal Inoculation on Ferruginous Soil in Center of Benin
( 30 ) Effect of Fungi and Manure on Cadmium Content and Biomass of Maize Grown In Cadmium Contaminated Tailing from Bangka Indonesia
( 31 ) Effect of Contamination by Fungi and Yeast on the Physiochemical Characteristics of Gum Arabic Stored in Semi-Desert Climate of Khartoum City, Sudan
( 32 ) The Effect of Varieties and Fungicide Spray Frequencies on Septoria Leaf Blotch (Mycosphaerella graminicola) Epidemics on Bread Wheat in Western Amhara, Ethiopia
( 33 ) The Fungicide and Variety Integration Effect on Late Blight (Phytophthora infestans) Disease of Potato (Solanum tuberosum L.) in Western Amhara Region, Ethiopia
( 37 ) Effect of Different Concentrations of Vermicompost (Biohumus) On the Root Collar Diameter and Height Growth in the Seedlings of Anatolian Black Pine
( 38 ) The Influence of Probiotics and Antibiotic Growth Promoter on Growth Performance and Hemato-Biochemical Parameters in Broilers
( 39 ) Comparative Growth Analysis and Yield Performance of Glycine Max under Jatropha Curcas Based Agrisilviculture System of Agroforestry in the Northern Part of Bangladesh
( 40 ) Effect of Whole Inedible Date and Amino Acid Supplementation on Growth Performance of Ross 308 Broiler Chicks
( 41 ) In Vitro Differential Effect of Nerve Growth Factor on Functional Parameters of Murrah Buffalo Spermatozoa in Low and High Fertile Groups
( 42 ) Genotypic Difference in Growth and Yield Related Traits of Onion (Allium Cepa L.) Varieties at Southern Tigray
( 43 ) Study on Agronomic Evaluation of Tomato (Lycopersicon Esculentum, Mill.) Varieties for Phonological, Growth and Yield Characters
( 44 ) Comparative Effect of Organic and In-Organic Fertilizer Treatment on the Growth and Tuberyeild of Sweet Potato (Ipomea Batata L)
( 46 ) Comparing Post-Partum Growth by Body Weight between Sex and Litter Size of Agouti (Dasyprocta Leporina) Offspring from Birth to 360 Days Old
( 47 ) Effect of Integrated Application of Poultry Manure and Chemical NP Fertilizers on Growth, Yield and Yield Components of Highland Maize Variety on Vertisol at Ambo University on Station, Ethiopia
( 48 ) Evaluation of Different Tillage Practices on Growth and Yield of Fluted Pumpkin Telfairia Occidentalis in Uyo, Southeastern Nigeria
( 49 ) Accelerating Agricultural Productivity to Enhance Economic Growth in Botswana
( 50 ) Growth and Survival Parameters and Blood IgG and Total Protein Levels of Calves Born in the First Production Year of Brown Swiss and Simmental Cows
( 51 ) Diversity and Growth Characteristics of Tree Species in the Botanical Gardens, University of Ibadan, Nigeria
( 52 ) Influence of Biochar and Poultry Manure on Weed Infestation and Growth of Arabica Coffee (Coffea Arabica) Seedlings
( 53 ) Effect of Planting Date on Growth and Yield of Bambara Groundnut (Vigna subtermnea (L) Verdc.) Varieties in Rainforest Zone of Delta State
( 54 ) Growth and Yield Response of Shallot (Allium cepa var. aggregatum) Varieties to Intra-Row Spacing in Eastern Amhara, Ethiopia
( 55 ) Estimation of Water Stress in Guinea and Sudano-Sahelian Ecological Zones of Nigeria Under Climate Change and Population Growth
( 56 ) Growth Performance of Kit Rabbits Fed Concentrate Diet Supplemented with Varying Foliage Leaf Meals
( 58 ) Study of Heavy Metals Variability and their Effect on Plant Growth in Kanzenze River of Upper Akagera Catchment, Rwanda