Contact Us

For Marketing, Sales and Subscriptions Inquiries
2637 E Atlantic Blvd #43110
Pompano Beach, FL 33062

Conference List

Journal of Nutrients

June 2015, Volume 2, 2, pp 27-38

Dietary Polyamines and Diseases: Reducing Polyamine Intake Can Be Beneficial In Cancer Treatment

Nihal Buyukuslu

Nihal Buyukuslu 1

  1. Istanbul Medipol University, School of Health Sciences, Department of Nutrition and Dietetics, Istanbul, Turkey 1

on Google Scholar
on PubMed

Pages: 27-38

DOI: 10.18488/journal.87/2015.2.2/

Share :


Polyamines are most abundant polycationic natural amines and involved in several physiological processes. They can be supplied by the endogenous synthesis inside the cell or by the intake from exogenous sources.  The polyamine content of cells is regulated by biosynthesis, degradation, uptake and excretion. The benefits of dietary polyamines can be changed; they may be harmful, neutral or beneficial. For example, increasing the amount of dietary polyamines is suggested during rapid growth, such as during the neonatal period, wound healing and after surgery. However, in cancer patients, reducing polyamine dietary intake has been shown to be beneficial on the quality of life.  This review aimed to evaluate the effect of dietary polyamines in health and disease.
Contribution/ Originality
This study contributes in the existing literature by providing a detailed information on the importance of dietary polyamines in health and diseases. This study also highlights the beneficial impact of low polyamine diet on cancer treatment, and helps to increase awareness of daily polyamine intake regarding individual requirements.




  1. C. A. Panagiotidis, S. Artandi, K. Calame, and S. Silverstein, "Polyamines alter sequence-specific DNA-protein interaction," Nucl. Acids. Res., vol. 23, pp. 1800-1809, 1995.
  2. A. E. Pegg and R. A. Casero, "Current status of the polyamine research field," Methods Mol. Biol., vol. 720, pp. 3-35, 2011.
  3. M. Kozova, P. Kalac, and T. Pelikanova, "Contents of biologically active polyamines in chicken meat, liver, heart and skin after slaughter and their changes during meat storage and cooking," Food Chem., vol. 116, pp. 419-425, 2009.
  4. R. D. Slocum, H. E. Flores, A. W. Galston, and L. H. Weinstein, "Improved method for HPLC analysis of polyamines, agmatine and aromatic monuamines in plant tissue," Plant Physiol., vol. 89, pp. 512-517, 1989.
  5. D. Valero, D. Martinez-Romero, and M. Serrano, "The role of polyamines in the improvement of the shelf life of fruit," Trends Food Sci. Tech., vol. 13, pp. 228-234, 2002.
  6. M. T. Veciana-Nogues, A. Marine-Font, and M. C. Vidal-Carou, "Biogenic amines in fresh and canned tuna. Effects of canning on biogenic amine contents," J. Agr. Food Chem., vol. 45, pp. 4324-4332, 1997.
  7. J. Y. Wang, "Polyamines regulate expression of E-cadherin and play an important role in control of intestinal epithelial barrier function," Inflammopharm., vol. 13, pp. 91-101, 2005.
  8. M. W. Ziegler, Hahn, and P. R. Wallnofer, "Changes in biogenic amine contents during processing of several plant foods," Deutsche Lebensmittel-Rundschau (In German), vol. 90, pp. 108-112, 1994.
  9. S. Bardocz, T. J. Duguid, D. S. Brown, G. Grant, A. Pusztai, A. White, and A. Ralph, "The importance of dietary polyamines in cell regeneration and growth," Br. J. Nutr., vol. 73, pp. 819-828, 1995a.
  10. S. Bardocz, "Polyamines in food and their consequences for food quality and human health," Trends Food Sci. Tech., vol. 6, pp. 341-346, 1995b.
  11. S. Bardocz, G. Grant, D. S. Brown, A. Ralph, and A. Pusztai, "Polyamines in food—implications for growth and health," J. Nutr. Biochem., vol. 4, pp. 66-71, 1993.
  12. F. Durlu-Ozkaya, E. Alichanidis, E. Litopoulou-Tzanetaki, and N. Tunail, "Determination of biogenic amine content of beyaz cheese and biogenic amine production ability of some lactic acid bacteria," Milchwissenschaft, vol. 54, pp. 680-682, 1999.
  13. K. A. Eliassen, R. Reistad, U. Risoen, and H. F. Ronning, "Dietary polyamines," Food Chem., vol. 78, pp. 273-280, 2002.
  14. T. Hernandez-Jover, M. Izquierdo-Pulido, M. T. Veciana-Nogues, A. Marine-Font, and M. C. Vidal-Carou, "Effect of starter cultures on biogenic amine formation during fermented sausage production," J. Food Protect, vol. 60, pp. 825-830, 1997.
  15. P. Kalac, M. Krizek, T. Pelikanova, M. Langova, and O. Veskrna, "Contents of polyamines in selected foods," Food Chem., vol. 90, pp. 561-564, 2005.
  16. P. Kalac, S. Svecova, and T. Pelikanova, "Levels of biogenic amines in typical vegetable products," Food Chem., vol. 77, pp. 349-351, 2002.
  17. T. Lavizzari, M. Teresa Veciana-Nogues, S. Bover-Cid, A. Marine-Font, and M. Carmen Vidal-Carou, "Improved method for the determination of biogenic amines and polyamines in vegetable products by ion-pair high-performance liquid chromatography," J. Chromatogr. A., vol. 1129, pp. 67-72, 2006.
  18. S. Moret, D. Smela, T. Populin, and L. Conte, "A survey on free biogenic amine content of fresh and preserved vegetables," Food Chem., vol. 89, pp. 355-361, 2005.
  19. N. Nishibori, S. Fujihara, and T. Akatuki, "Amounts of polyamines in foods in Japan and intake by Japanese," Food Chem., vol. 100, pp. 491-499, 2006.
  20. K. Nishimura, R. Shiina, K. Kashiwagi, and K. Igarashi, "Decrease in polyamines with aging and their ingestion from food and drink," J. Biochem., vol. 139, pp. 81-90, 2006.
  21. S. Novella-Rodriguez, M. T. Veciana-Nogues, M. Izquierdo-Pulido, and M. C. Vidal-Carou, "Distribution of biogenic amines and polyamines in cheese," J. Food Sci., vol. 68, pp. 750-755, 2003.
  22. S. N. Novella-Rodriguez, M. T. Veciana-Nogues, A. X. Roig-Sagues, A. J. Trujillo-Mesa, and M. C. Vidal- Carou, "Evaluation of biogenic amines and microbial counts throughout the ripening of goat cheeses from pasteurized and raw milk," J. Dairy Res., vol. 71, pp. 245-252, 2004.
  23. S. Novella-Rodriguez, M. T. Veciana-Nogues, and M. C. Vidal-Carou, "Biogenic amines and polyamines in milks and cheeses by ionpair high performance liquid chromatography," J. Agric. Food Chem., vol. 48, pp. 5117-5123, 2000.
  24. A. Okamoto, E. Sugi, Y. Koizumi, F. Yanagida, and S. Udaka, "Polyamine content of ordinary food stuffs and various fermented foods," Biosci. Biotechnol. Biochem., vol. 61, pp. 1582-1586, 1997.
  25. M. Saaid, B. Saad, N. H. Hashim, A. S. M. Ali, and M. I. Saleh, "Determination of biogenic amines in selected Malaysian food," Food Chem., vol. 113, pp. 1356-1362, 2009.
  26. C. M. G. Silva and M. B. A. Gloria, "Bioactive amines in chicken breast and thigh after slaughter and during storage at 4 ± 1 °C and in chicken-based meat products," Food Chem., vol. 78, pp. 241-249, 2002.
  27. K. Valsamaki, A. Michaelidou, and A. Polychroniadou, "Biogenic amine production in feta chees," Food Chem., vol. 71, pp. 259-266, 2000.
  28. Y. J. Xu, T. Hara, K. Samejima, H. Sasaki, M. Kobayashi, A. Takahashi, and M. Niitsu, "Simultaneous determination of endogenous and orally administered 15n-labeled polyamines in rat organs," Anal. Biochem., vol. 301, pp. 255-260, 2002.
  29. M. A. Ali, E. Poortvliet, R. Stromberg, and A. Yngve, "Polyamines in foods: Development of a food database," Food Nutr. Res., vol. 55. DOI: 10.3402/fnr.v55i0.5472, 2011.
  30. N. Buyukuslu, H. Hizli, K. Esin, and M. Garipagaoglu, "A cross-sectional study: Nutritional polyamines in frequently consumed foods of the Turkish population," Foods, vol. 3, pp. 541-557, 2014.
  31. A. Ralph, K. Englyst, and S. Bardocz, Polyamine content of the human diet. In polyamines in health and nutrition. Bardocz, S., White, A., (Eds). London, UK: Kluwer Academic Publishers, 1999.
  32. C. Zoumas-Morse, C. L. Rock, E. L. Quintana, M. L. Neuhouser, E. W. Gerner, and F. L. Meyskens, "Development of a polyamine database for assessing dietary intake," J. Am. Diet. Assoc., vol. 107, pp. 1024-1027, 2007.
  33. R. A. Casero and L. J. Marton, "Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases," Nat. Rev. Drug Discov., vol. 6, pp. 373-390, 2007.
  34. E. W. Gerner and F. L. Meyskens, "Polyamines and cancer: Old molecules, new understanding," Nat. Rev. Cancer., vol. 4, pp. 781-792, 2004.
  35. N. Babbar, T. Murray-Stewart, and R. A. Casero, "Inflammation and polyamine catabolism: The good, the bad and the ugly," Biochem Soc. Trans., vol. 35, pp. 300-304, 2007.
  36. H. Tomitori, T. Usui, N. Saeki, S. Ueda, H. Kase, K. Nishimura, K. Kashiwagi, and K. Igarashi, "Polyamine oxidase and acrolein as novel biochemical markers for diagnosis of cerebral stroke," Stroke, vol. 36, pp. 2609-2613, 2005.
  37. M. Yoshida, K. Higashi, E. Kobayashi, N. Saeki, K. Wakui, T. Kusaka, H. Takizawa, K. Kashiwado, N. Suzuki, K. Fukuda, T. Nakamura, K. Watanabe, S. Tada, Y. Machi, M. Mizoi, T. Toida, T. Kanzaki, H. Tomitori, K. Kashiwagi, and K. Igarashi, "Correlation between images of silent brain infarction, carotid atherosclerosis and white matter hyperintensity, and plasma levels of acrolein, IL-6 and CRP," Atherosclerosis, vol. 211, pp. 475-479, 2010.
  38. K. Igarashi and K. Kashiwagi, "Use of polyamine metabolites as markers for stroke and renal failure," Methods Mol. Biol., vol. 720, pp. 395-408, 2011.
  39. D. L. Kramer, P. Diegelman, J. Jell, S. Vujcic, S. Merali, and C. W. Porter, "Polyamine acetylation modulates polyamine metabolic flux, a prelude to broader metabolic consequences " J. Biol. Chem., vol. 283, pp. 4241-4251, 2008.
  40. P. Kalac, "Health effects and occurrence of dietary polyamines: A review for the period 2005 mid 2013," Food Chem., vol. 161, pp. 27-39, 2014.
  41. R. A. Casero and A. E. Pegg, "Polyamine catabolism and disease," Biochem. J., vol. 421, pp. 323-338, 2009.
  42. E. W. Gerner, "Impact of dietary amino acids and polyamines on intestinal carcinogenesis and chemoprevention in mouse models," Biochem Soc. Trans., vol. 35, pp. 322-325, 2007.
  43. S. L. Nowotorski, P. M. Woster, and R. A. Casero, "Polyamines and cancer: Implications for chemoprevention and chemotherapy," Expert Rev. Mol. Med., vol. 15, p. e3, 2013.
  44. A. E. Pegg, "Polyamine metabolism and its importance in neoplastic growth and as a target for chemotherapy," Cancer Res., vol. 48, pp. 759-774, 1988.
  45. D. H. Rusel, "Increased polyamine concentrations in the urine of human cancer patients," Nature, vol. 23, pp. 144-145, 1971.
  46. D. Russell and S. H. Snyder, "Amine synthesis in rapidly growing tissues: Ornithine decarboxylase activity in regenerating rat liver, chick embryo, and various tumors," Proc. Natl. Acad. Sci. USA., vol. 60, pp. 1420-1427, 1968.
  47. V. Battaglia, C. DeStefano Shields, T. Murray-Stewart, and R. A. Casero, "Polyamine catabolism in carcinogenesis: Potential targetsfor chemotherapy and chemoprevention," Amino Acids, vol. 46, pp. 511-519, 2014.
  48. D. H. Rusel, "Clinical relevance of polyamines as biochemical markers of tumor kinetics," Clin. Chem., vol. 23, pp. 22-27, 1977.
  49. A. Bardia, E. A. Platz, S. Yegnasubramanian, A. M. De Marzo, and W. G. Nelson, "Anti-inflammatory drugs, antioxidants, and prostate cancer prevention," Curr. Opin. Pharmacol., vol. 9, pp. 419-426, 2009.
  50. N. De Vera, E. Martinez, and C. Sanfeliu, "Spermine induces cell death in cultured human embryonic cerebral cortical neurons through N-methyl-D-aspartate receptor activation," J. Neurosci. Res., vol. 86, pp. 861-872, 2008.
  51. T. Tanaka, "Preclinical cancer chemoprevention studies using animal model of inflammation-associated colorectal carcinogenesis," Cancers, vol. 4, pp. 673-700, 2012.
  52. K. Soda, Polyamines - The principal candidate substance of soybean-induced health, soybean and health. Prof. Hany El-Shemy (Eds.), ISBN: 978-953-307-535-8, InTech, DOI: 10.5772/17715, 2011.
  53. R. Das and M. S. Kanungo, "Activity and modulation of ornithine decarboxylase and concentrations of polyamines in various tissues of rats as a function of age," Exp. Geront., vol. 17, pp. 95-103, 1982.
  54. M. Kaeberlein, "Spermidine surprise for a long life," Nat. Cell Biol., vol. 11, pp. 1277-1278, 2009.
  55. N. Minois, P. Rockenfeller, T. K. Smith, and D. Carmona-Gutierrez, "Spermidine feeding decreases age-related locomotor activity loss and induces changes in lipid composition," PLoSOne, vol. 9, p. e102435, 2014.
  56. P. N. T. Binh, K. Soda, and M. Kawakami, "Mediterranean diet and polyamine intake: Possible contribution of increased polyamine intake to inhibition of age-associated disease," Nutr. Diet Suppl., vol. 3, pp. 1-7, 2011.
  57. T. J. LaRocca, R. A. Gioscia-Ryan, C. M. Hearon, and D. R. Seals, "The autophagy enhancer spermidine reverses arterial aging," Mech. Ageing. Dev., vol. 134, pp. 314-320, 2013.
  58. J. H. Gao, L. J. Guo, Z. Y. Huang, J. N. Rao, and C. W. Tang, "Roles of cellular polyamines in mucosal healing in the gastrointestinal tract," J. Physiol. Pharmacol., vol. 64, pp. 681-693, 2013.
  59. N. Seiler and F. Raul, "Polyamines and the intestinal tract," Crit. Rev. Clin. Lab. Sci., vol. 44, pp. 365-411, 2007.
  60. J. Timmons, E. T. Chang, J. Y. Wang, and J. N. Rao, "Polyamines and gut mucosal homeostasis," J. Gastrointest. Dig. Syst., vol. 20, p. 001, 2012.
  61. C. V. Lagishetty and S. R. Naik, "Polyamines: Potential anti-inflammatory agents and their possible mechanism of action," Indian J. Pharmacol., vol. 40, pp. 121-125, 2008.
  62. R. Kibe, S. Kurihara, Y. Sakai, H. Suzuki, T. Ooga, E. Sawaki, K. Muramatsu, A. Nakamura, A. Yamashita, Y. Kitada, M. Kakeyama, Y. Benno, and M. Matsumoto, "Upregulation of colonic luminal polyamines produced by intestinal microbiota delays senescence in mice," Sci. Rep., vol. 1, p. 4548, 2014.
  63. A. Orlando, M. Linsalata, M. Notarnicola, V. Tutino, and F. Russo, "Lactobacillus GG restoration of the gliadin induced epithelial barrier disruption: The role of cellular polyamines," BMC Microbiol., vol. 14, p. 19, 2014.
  64. S. Y. Wang and M. Faust, "Comparison of seasonal growth and polyamine content in shoots of orchard-grown standard and genetic dwarf apple trees," Physiol Plantarum., vol. 89, pp. 376-380, 1993.
  65. G. Michaelsson, B. Gerden, E. Hagforsen, B. Nilsson, I. Pihl-Lundin, W. Kraaz, G. Hjelmquist, and L. Lööf, "Psoriasis patients with antibodies to gliadin can be improved by a gluten-free diet," Br. J. Dermatol., vol. 142, pp. 44-51, 2000.
  66. V. Broshtilova, V. Lozanov, and L. Miteva, "Polyamine metabolism changes in psoriasis," Indian J. Dermatol., vol. 58, pp. 306-309, 2013.
  67. A. Gugliucci and T. Menini, "The polyamines spermine and spermidine protect proteins from structural and functional damage by AGE precursors: A new role for old molecules?," Life Sci., vol. 72, pp. 2603-2616, 2003.
  68. R. H. S. Ahmad, K. Moinuddin, and A. Ali, "Physicochemical studies on glycation-induced structural changes in human IgG," IUBMB Life, vol. 64, pp. 151-156, 2012.
  69. A. R. Hipkiss, "Glycation, ageing and carnosine: Are carnivorous diets beneficial?," Mech. Ageing. Dev., vol. 126, pp. 1034-1039, 2005.
  70. M. G. Makletsova, T. N. Fedorova, M. Y. Maksimova, and A. A. Boldyrev, "Effects of carnosine on polyamine levels in red blood cells of patients with hypertonic discirculatory encephalopathy," Bull. Exp. Biol. Med., vol. 154, pp. 210-212, 2012.
  71. R. Seidl, S. Beninati, N. Cairns, N. Singewald, D. Risser, H. Bavan, M. Nemethova, and G. Lubec, "Polyamines in frontal cortex of patients with down syndrome and alzheimer disease," Neurosci. Lett., vol. 206, pp. 193-195, 1996.
  72. A. L. Cason, Y. Ikeguchi, C. Skinner, T. C. Wood, H. A. Lubs, F. Martinez, R. J. Simensen, R. E. Stevenson, A. E. Pegg, and C. E. Schwartz, "X-Linked spermine synthase gene (SMS) defect: The first polyamine deficiency syndrome," Eur. J. Hum. Genet., vol. 11, pp. 937-944, 2003.
  73. A. E. Pegg, "Mammalian polyamine metabolism and function," IUBMB Life, vol. 61, pp. 880-894, 2009.
  74. P. Kalac and P. Krausova, "A review of dietary polyamines: Formation, implications for growth and health and occurrence in foods," Food Chem., vol. 90, pp. 219-230, 2004.
  75. J. K. Stechmiller, B. Childress, and L. Cowan, "Arginine supplementation and wound healing," Nutr. Clin. Pract., vol. 20, pp. 52-61, 2005.
  76. L. Alhonen, J. J. Parkkinen, T. Keinanen, R. Sinervirta, K. H. Herzig, and J. Janne, "Activation of polyamine catabolism in transgenic rats induces acute pancreatitis," Proc. Natl. Acad. Sci. U S A, vol. 97, pp. 8290-8295, 2000.
  77. S. Sarhan, B. Knodgen, and N. Seiler, "The gastrointestinal tract as polyamine source for tumor growth," Anticancer Res., vol. 9, pp. 215-223, 1989.
  78. F. L. Meyskens and E. W. Gerner, "Development of difluoromethylornithine (DFMO) as a chemoprevention agent," Clin. Cancer Res., vol. 5, pp. 945-951, 1999.
  79. C. S. Hayesa, M. R. Burnsb, and S. K. Gilmour, "Polyamine blockade promotes antitumor immunity," OncoImmunol., vol. 3, p. e27360, 2014.
  80. B. G. Cipolla, R. Havouis, and J. P. Moulinoux, "Polyamine contents in current foods: A basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients," Amino Acids, vol. 33, pp. 203-212, 2007.
  81. B. Cipolla, J. Y. Bansard, J. P. Ecalard, and J. P. Moulinoux, "Treating metastatic castration-resistant prostate cancer with novel polyamine-free oral nutritional supplementation: Phase I study," BioMed., vol. 3, pp. 114-119, 2013.
  82. R. F. Bell, J. Borzan, and G. E. Kalso, "Simonnet, food, pain, and drugs: Does it matter what pain patients eat?," Pain, vol. 153, pp. 1993-1996, 2012.
  83. C. Rivat, P. Richebe, E. Laboureyras, J. P. Laulin, R. Havouis, F. Noble, J. P. Moulinoux, and G. Simonnet, "Polyamine deficient diet to relieve pain hypersensitivity," Pain, vol. 137, pp. 125-137, 2008.
  84. J. P. Estebe, F. Legay, M. Gentili, E. Wodey, C. Leduc, C. Ecoffey, and J. P. Moulinoux, "An evaluation of a polyamine-deficient diet for the treatment of inflammatory pain," Anesth Analg, vol. 102, pp. 1781-1788, 2006.
  85. J. Ferrier, M. Bayet-Robert, B. Pereira, L. Daulhac, A. Eschalier, D. Pezet, J. P. Moulinoux, and D. Balayssac, "A polyamine-deficient diet prevents oxaliplatin-induced acute cold and mechanical hypersensitivity in rats," PLoS ONE, vol. 8, p. e77828, 2013.
  86. C. Löser, A. Eisel, D. Harms, and U. R. Fölsch, "Dietary polyamines are essential luminal growth factors for small intestinal and colonic mucosal growth and development," Gut., vol. 44, pp. 12-16, 1999.
  87. K. Nishimura, T. Yanase, H. Nakagawa, S. Matsuo, Y. Ohnishi, and S. Yamasaki, "Effect of polyamine-deficient chow on trypanosoma brucei brucei infection in rats," J Parasitol., vol. 95, pp. 781-786, 2009.
  88. K. P. Raj, J. A. Zell, C. L. Rock, C. E. McLaren, C. Zoumas-Morse, E. W. Gerner, and F. L. Meyskens, "Role of dietary polyamines in a phase III clinical trial of difluoromethylornithine (DFMO) and sulindac for prevention of sporadic colorectal adenomas," Br. J. Cancer, vol. 108, pp. 512-518, 2013.
  89. B. G. Cipolla, R. Havouis, and J. P. Moulinoux, "Polyamine reduced diet (PRD) nutrition therapy in hormone refractory prostate cancer patients," Biomed Pharmacother, vol. 64, pp. 363-368, 2010.
  90. M. Linsalata and F. Russo, "Nutritional factors and polyamine metabolism in colorectal cancer," Nutr., vol. 24, pp. 382-389, 2008.
  91. A. J. Vargas, B. C. Wertheim, E. W. Gerner, C. A. Thomson, C. L. Rock, and P. A. Thompson, "Dietary polyamine intake and risk of colorectal adenomatous polyps," Am. J. Clin. Nutr., vol. 96, pp. 133-141, 2012.


Google Scholor ideas Microsoft Academic Search bing Google Scholor


Competing Interests:


Related Article