Citations


Contact Us

For Marketing, Sales and Subscriptions Inquiries
2637 E Atlantic Blvd #43110
Pompano Beach, FL 33062
USA

Conference List

Asian Journal of Energy Transformation and Conservation

December 2014, Volume 1, 2, pp 115-125

Effect of Active Mass in Electrode Disc on Performance of Li1.06ni0.313co0.313mn0.313o2cathode

Chunxia Gong

,

Guanghua Li

,

Lixu Lei

Chunxia Gong 1

Guanghua Li 2 Lixu Lei 2 

  1. School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China, Zhejiang Tianneng battery (Jiangsu) Co., Ltd.,Shuyang Jiangsu, China 1

  2. School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China 2

Pages: 115-125

DOI: 10.18488/journal.81/2014.1.2/81.2.115.125

Share :


Abstract:

Li1.06Ni0.313Co0.313Mn0.313O2 sample has been synthesized by calcination of co-precipitated precursors. Scanning electron microscopy shows that sample powders are aggregated microplates with average sizes of 200 nm. Electrochemical tests show that Cell-2.0 which has the least mass in cathode disc presents initially a much higher discharge capacity under a current density of 135 mA•g-1, 270 mA•g-1, 540 mA•g-1, 810 mA•g-1, 1080 mA•g-1and 1350 mA•g-1 than the other cells. And Cell-2.0 exhibits better cycling performance with capacity retention of 95.58 % after 40 cycles at 270 mA•g-1 current densities than Cell-2.6(77.18 %), Cell-3.0(74.54 %), Cell-3.2(74.79 %) and Cell-3.6(77.56 %). The cells with a regression equation: DC(mAh•g-1)=a×m(mg) +b, regression coefficient: r≧ 0.75216; a = 7.16984I(C)– 61.50523, regression coefficient: r = 0.95522;b= -39.75258I(C) + 297.48985, regression coefficient: r = 0.9508. Therefore, decreasing the mass in each cathode disc can improve the performance of Li1.06Ni0.313Co0.313Mn0.313O2 cells.
Contribution/ Originality
The paper contributes the first example to establishment the regression equation about discharged capacity and the mass in each cathode disc.

Keywords:


Reference:

  1. X. J. Wang, Q. T. Qu, Y. Y. Hou, F. X. Wang, and Y. P. Wu, "An aqueous rechargeable lithium battery of high energy density based on coated Li metal and LiCoO2,"Chemical Communications, vol. 49, pp. 6179-6181, 2013.
  2. T. Ohzuku and Y. Makimura,"Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries,"Chemistry Letters, vol. 7, pp. 642-643, 2001.
  3. K. M. Shaju, G. V. S. Rao, and B. V. R. Chowdari, "Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries,"Electrochimica Acta, vol. 48, pp. 145-151, 2002.
  4. Y. Koyama, I. Tanaka, H. Adachi, Y. Makimura, and T. Ohzuku, "Crystal and electronic structures of superstructural Li1-xCo1/3Ni1/3Mn1/3O2 (0 ? x ?1),"Journal of Power Sources, vol. 119, pp. 644-648, 2003.
  5. L. Tan and H. W. Liu,"High rate charge-discharge properties of LiNi1/3Co1/3Mn1/3O2 synthesized via a low temperature solid-state method,"Solid State Ionics, vol. 181, pp. 1530-1533, 2010.
  6. J. L. Xie, X. A. Huang, Z. B. Zhu, and J. H. Dai, "Hydrothermal synthesis of Li(Ni1/3Co1/3Mn1/3)O2 for lithium rechargeable batteries,"Ceramics International, vol. 36, pp. 2485-2487, 2010.
  7. Y. F. Su, F. Wu, M. Wang, L. Y. Bao, and S. Chen, "A novel method for synthesis of layered LiNi1/3Mn1/3Co1/3O2 as cathode material for lithium-ion battery,"Journal of Power Sources, vol. 195, pp. 2362-2367, 2010.
  8. J. Molenda, A. Milewska, and M. Molenda,"Structural, transport and electrochemical properties of LiNi1-yCoyMn0.1O2 and Al, Mg and Cu-substituted LiNi0.65Co0.25Mn0.1O2 oxides,"Solid State Ionics, vol. 192, pp. 313-320, 2011.
  9. Y. K. Zhou, Y. Y. Hu, J. Wang, and Z. P. Shao, "Preparation and characterization of macroporous LiNi1/3Co1/3Mn1/3O2 using carbon sphere as template,"Materials Chemistry and Physics, vol. 129, pp. 296-300, 2011.
  10. Z. D. Huang, X. M. Liu, S. W. Oh, B. A. Zhang, P. C. Ma, and J. K. Kim, "Microscopically porous, interconnected single crystal LiNi1/3Co1/3Mn1/3O2 cathode material for Lithium ion batteries," Journal of Materials Chemistry, vol. 21, pp. 10777-10784, 2011.
  11. Z. D. Huang, X. M. Liu, B. A. Zhang, S. W. Oh, P. C. Ma, and J. K. Kim, "LiNi1/3Co1/3Mn1/3O2 with a novel one-dimensional porous structure: A high-power cathode material for rechargeable Li-ion batteries,"Scripta Materialia, vol. 64, pp. 122-125, 2011.
  12. Y. Y. Hu, Y. K. Zhou, J. Wang, and Z. P. Shao, "Preparation and characterization of macroporous LiNi1/3Co1/3Mn1/3O2 using carbon sphere as template," Materials Chemistry and Physics, vol. 129, pp. 296-300, 2011.
  13. H. B. Ren, X. Y. Liu, H. P. Zhao, Z. H. Peng, and Y. H. Zhou, "Electrochemical properties of submicron-sized LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium-ion battery," International Journal of Electrochemical Science, vol. 6, pp. 727-738, 2011.
  14. H. B. Ren, X. Lie, and Z. H. Peng,"Electrochemical properties of Li Ni1/3Mn1/3Al1/3-xCoxO2 as a cathode material for lithium ion battery,"Electrochimica Acta, vol. 56, pp. 7088-7091, 2011.
  15. H. W. Liu and L. Tan,"High rate performance of novel cathode material Li1.33Ni1/3Co1/3Mn1/3O2 for lithium ion batteries," Materials Chemistry and Physics, vol. 129, pp. 729-732, 2011.
  16. Y. S. Lee, K. S. Lee, Y. K. Sun, Y. M. Lee, and D. W. Kim, "Effect of an organic additive on the cycling performance and thermal stability of lithium-ion cells assembled with carbon anode and LiNi1/3Co1/3Mn1/3O2 cathode,"Journal of Power Sources, vol. 196, pp. 6997-7001, 2011.
  17. T. E. Hong, E. D. Jeong, S. R. Baek, M. R. Byeon, Y. S. Lee, F. N. Khan, and H. S. Yang,"Nano SIMS characterization of boron and aluminum-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium secondary ion batteries,"Journal of Applied Electrochemistry, vol. 42, pp. 41-46, 2012.
  18. P. X. Zhang, L. Zhang, X. Z. Ren, Q. H. Yuan, J. H. Liu, and Q. L. Zhang, "Preparation and electrochemical properties of LiNi1/3Co1/3Mn1/3O2-PPy composites cathode materials for lithium-ion battery,"Synthetic Metals, vol. 161, pp. 1092-1097, 2011.
  19. C. X. Ding, Y. C. Bai, X. Y. Feng, and C. H. Chen, "Improvement of electrochemical properties of layered LiNi1/3Co1/3Mn1/3O2 positive electrode material by zirconium doping,"Solid State Ionics, vol. 189, pp. 69-73, 2011.
  20. R. Santhanam and B. Rambabu,"High rate cycling performance of Li1.05Ni1/3Co1/3Mn1/3O2 materials prepared by sol-gel and co-precipitation methods for lithium-ion batteries," Journal of Power Sources, vol. 195, pp. 4313-4317, 2010.
  21. F. Wu, M. Wang, Y. F. Su, L. Y. Bao, and S. Chen, "A novel method for synthesis of layered LiNi1/3Mn1/3Co1/3O2 as cathode material for lithium-ion battery," Journal of Power Sources, vol. 195, pp. 2362-2367, 2010.
  22. A. M. A. Hashem, A. E. Abdel-Ghany, A. E. Eid, J. Trottier, K. Zaghib, A. Mauger, and C. M. Julien,"Study of the surface modification of LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion battery,"Journal of Power Sources, vol. 196, pp. 8632-8637, 2011.
  23. C. V. Rao, A. L. M. Reddy, Y. Ishikawa, and P. M. Ajayan, "LiNi1/3Co1/3Mn1/3O2-Graphene composite as a promising cathode for lithium-ion batteries,"Acs Applied Materials & Interfaces, vol. 3, pp. 2966-2972, 2011.
  24. K. Xu, Z. Jie, R. Li, Z. Chen, S. Wu, J. Gu, and J. Chen, "Synthesis and electrochemical properties of CaF2-coated for long-cycling Li[Mn1/3Co1/3Ni1/3]O2 cathode materials," Electrochimica Acta, vol. 60, pp. 130-133, 2012.
  25. L. Tan and H. W. Liu, "Influence of ZnO coating on the structure, morphology and electrochemical performances for LiNi1/3Co1/3Mn1/3O2 material," Russian Journal of Electrochemistry, vol. 47, pp. 156-160, 2011.
  26. X. W. Li, Y. B. Lin, Y. Lin, H. Lai, and Z. G. Huang, "Surface modification of LiNi1/3Co1/3Mn1/3O2 with Cr2O3 for lithium ion batteries,"Rare Metals, vol. 31, pp. 140-144, 2012.
  27. J. Q. Dou, X. Y. Kang, T. Wumaier, H. W. Yu, N. Hua, Y. Han, and G. Q. Xu,"Effect of lithium boron oxide glass coating on the electrochemical performance of LiNi1/3Co1/3Mn1/3O2,"Journal of Solid State Electrochemistry, vol. 16, pp. 1481-1486, 2012.
  28. Y. W. Li, Y. X. Li, S. K. Zhong, F. P. Li, and J. W. Yang, "Synthesis and electrochemical properties of Y-doped LiNi1/3Mn1/3Co1/3O2 cathode materials for Li-Ion battery," Integrated Ferroelectrics, vol. 127, pp. 150-156, 2011.
  29. M. H. Jaafar, N. S. Mohamed, R. Yahya, and N. Kamarulzaman, "LiMn0.3Co0.3Ni0.3Cr0.1O2 cathode materials prepared via sol-gel and combustion methods," International Congress on Advances in Applied Physics and Materials Science, vol. 1400, pp. 280-285, 2011.
  30. J.M. Zheng, D.R. Zhu, Y. Yang, and Y.S. Fung, "The effects of N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide–based electrolyte on the electrochemical performance of high capacity cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2," Electrochimica Acta, vol. 59, pp. 14-22, 2012.
  31. X.H. Zhang, C. Yu, X.D. Huang, J. Zheng, X.F. Guan, D. Luo, and L.P. Li,"Novel composites Li[LixNi0.34-xMn0.47Co0.19]O2 (0.18?x?0.21): Synthesis and application as high-voltage cathode with improved electrochemical performance for lithium ion batteries,"Electrochimica Acta, vol. 81, pp. 233-238, 2012.
  32. J. Wang, M.H. Zhang, C.L.Tang, Y.G. Xia, and Z. P.Liu,"Microwave-irradiation synthesis of Li1.3NixCoyMn1-x-yO2.4 cathode materials for lithium ion batteries,"Electrochimica Acta, vol. 80, pp. 15-21, 2012.
  33. J. Wang, G.X. Yuan, M.H. Zhang, B. Qiu, Y.G. Xia, and Z.P. Liu,"The structure, morphology, and electrochemical properties of Li1+xNi1/6Co1/6Mn4/6O2.25+x/2 (0.1?x?0.7) cathode materials," Electrochimica Acta, vol. 66, pp. 61-66, 2012.
  34. J. W. Lee, J. H. Lee, T. T. Viet, J. Y. Lee, J. S. Kim, and C. H. Lee, "Synthesis of LiNi1/3Co1/3Mn1/3O2 cathode materials by using a supercritical water method in a batch reactor,"Electrochimica Acta, vol. 55, pp. 3015-3021, 2010.
  35. S. Y. Yang, X. Y. Wang, Q. Q. Chen, X. K. Yang, J. J. Li, and Q. L. Wei, "Effects of complexants on Ni1/3Co1/3Mn1/3CO3 morphology and electrochemical performance of LiNi1/3Co1/3Mn1/3O2,"Journal of Solid State Electrochemistry, vol. 16, pp. 481-490, 2012.
  36. P. Gao, G. Yang, H. D. Liu, L. Wang, and H. S. Zhou, "Lithium diffusion behavior and improved high rate capacity of LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium batteries," Solid State Ionics, vol. 207, pp. 50-56, 2012.

Statistics:

Google Scholor ideas Microsoft Academic Search bing Google Scholor

Funding:

Competing Interests:

Acknowledgement:


Related Article

( 1 ) Soil Thermal Properties and the Effects of Groundwater on Closed Loops
( 2 ) Direct Effects of Stubble Burning on Some Edaphic Characteristics of Coastal Plain Sands at Different Heating Intensities
( 3 ) Application of Response Surface Methodology (RSM) and Artificial Neural Network (ANN) for Achieving Desire BA in the Biotransformation of Benzaldehyde Using Free Cells of Saccharomyces Cerevisae and the Effect of Β-Cyclodextrin
( 4 ) Tourism Advertisement Management and Effective Tools in Tourism Industry
( 5 ) Effects of Climatic Change On Gsm Signal in Lagos Metropolitan Terrain
( 6 ) Agrochemicals and Personal Care Products: Occurrence, Effects, Analytical Determination and Treatment Processes
( 7 ) Effect of Active Mass in Electrode Disc on Performance of Li1.06ni0.313co0.313mn0.313o2cathode
( 8 ) An Exploratory Study of Effects of Prepaid Metering and Energy Related Behaviour among Ghanaian Household
( 9 ) The Effect of Ergonomics on Sustainable Urban Development: A Case Study
( 10 ) An Analysis of Effective Factors on Spatial Distribution of Poverty in Rural Regions of Hamedan Province
( 11 ) Investigation of the Effect of Weather Conditions on Solar Energy in Rivers State University of Science and Technology, Port Harcourt, Nigeria
( 12 ) Dimension Effect on the Ultrasonic Pulse Velocity
( 13 ) The Effect of Co2 Emission and Economic Growth on Energy Consumption in Sub Sahara Africa
( 14 ) Assessment of Environmental Effect of Abandoned Uranium Mine Site in Mika Village of Taraba State Nigeria
( 15 ) Effect of Local Admixture Ipomoea Asarifolia (Ajara) on the Strength Characteristics of Stabilized and Unstabilized Lateritic Blocks
( 16 ) Likely Effects of Geological Features on Carbonate Rock Strength
( 17 ) Mössbauer Research of Surface-Surface Concentric-Zonal Color Effects in Zoloceramic Materials
( 18 ) Analysis of the Effect of Variations in Refractivity Gradient on Line of Sight Percentage Clearance and Single Knife Edge Diffraction Loss
( 19 ) Economic Contributions and Environmental Effects of Geothermal Energy: Çanakkale-Tuzla Geothermal Example
( 20 ) Effects of Municipal Abattoir Waste on Water Quality of Woji River in Trans-Amadi Industrial Area of Port Harcourt, Nigeria: Implication for Sustainable Urban Environmental Management
( 21 ) Effects of Hydroclimatic Variability on the Spatial Dynamics of Ponds (Simenti, Kountadala and Oudassi) of the Gambia River Basin in the Niokolo Koba National Park (Senegal)
( 22 ) Energy Trading and Congestion Management Using Real and Reactive Power Rescheduling and Load Curtailment
( 24 ) Active Tectonics of Hamedan Area, West Iran
( 25 ) Tectomagmatic Origin of the Zahedan Batholiths – South East Iran (Reling on Intergrated Outcrop Study of the Petrology of High Mass in Loochan, Southwest Zahedan)
( 26 ) Valorization of Hazelnut Biomass Framework in Turkey: Support and Model Guidelines from the Italian Experience in the Field of Renewable Energy
( 28 ) Simulation of Solar Photovoltaic, Biomass Gas Turbine and District Heating Hybrid System
( 30 ) Fonctionnement Hydrodynamique Des Aquiferes Discontinus De La Region D’abidjan-Agboville (Sud De La Cote D’ivoire)
( 32 ) Interdisciplinary Studies of Ancient and the Most Ancient Heritage Sites in the Geography of Culture
( 33 ) Using Rubber Aggregate Derived from Discarded Tires for Producing Cement Concrete towards Resource Recovery and Environmental Protection in Vietnam
( 34 ) Energy Demand and Financial Sector Performance in Sub-Saharan African Region