Citations


Contact Us

For Marketing, Sales and Subscriptions Inquiries
2637 E Atlantic Blvd #43110
Pompano Beach, FL 33062
USA

Conference List

Review of Advances in Physics Theories and Applications

December 2014, Volume 1, 2, pp 42-47

Thermodynamics Properties of Copper Halide Alloy (CuBr0.5Cl0.5)

Elnaz Parham

,

Ali Mokhtari

Elnaz Parham 1 ,

Ali Mokhtari 1 
  1. Department of Physics, Faculty of Science, Shahrekord University, Shahrekord , Iran 1

on Google Scholar
on PubMed

Pages: 42-47

DOI: 10.18488/journal.75/2014.1.2/75.2.42.47

Share :


Abstract:

Ab initio density functional theory (DFT) has been used to investigate the thermal properties of the CuBr0.5Cl0.5 alloys over a wide range of temperature. Using the quasiharmonic approximation (QHA) for the some physical quantities of interest such as heat capacity at constant volume and entropy are calculated and discussed. The theoretical results show good agreement with the available experimental data for CuBr and CuCl. The present results show that symmetric and asymmetric structure of CuBr0.5Cl0.5 have a good agreement with the calculatingly value for heat capacity.
Contribution/ Originality

Keywords:


Reference:

  1. E. Königsberger and H. Schrunner, "On lattice parameters and enthalpies of mixing of alkali halide solid solutions," Physica Status Solidi (B), vol. 151, pp. 101-109, 1989.
  2. D. Frohlich, E. Mohler, and P. Wiesner, "Observation of exciton polariton dispersion in cucl," Phys. Rev. Lett., vol. 26,10, pp. 551-556, 1971.
  3. A. Blacha, N. E. Christensen, and M. Cardona, "Electronic structure of the high- pressure modifications of CuCl, CuBr," Cul. Phys. Rev. B., vol. 33, pp. 2413-2421, 1986.
  4. K. Endo, K. Yamamoto, and K. Deguchi, "Structure analysis of metal (I) halide mixed crystal by 63Cu MASNMR and x-ray diffraction methods. III. CuClxBr1-x crystal," J. Phys. Chem. Solids., vol. 54, pp. 357–364, 1993.
  5. H. Heireche, B. Bouhafs, H. Aourag, M. Ferhat, and M. Certier, "Electronic and optical properties of copper halides mixed crystal CuCl 1 ? x Br x," J. Phys. Chem Solids., vol. 59 ,6, pp. 997-1007, 1998.
  6. B. Bouhafs, H. Heireche, W. Sekkal, H. Aourag, and M. Certier, "Electronic and optical properties of copper halides mixed crystal CuCl1-xIx," Phys. Lett. A., vol. 240, pp. 257-264, 1998.
  7. B. Bouhafs, H. Heireche, W. Sekkal, H. Aourag, M. Ferhat, and M. Certier, "Electronic and optical properties of copper halide mixed crystals CuBr1-xIx," Phys. Status Solidi. B., vol. 209, pp. 339-352, 1998.
  8. W. Sekkal, A. Laref, A. Zaoui, H. Aourag, and M. Certier, "The miscibility of copper halides using a three-body potential. I. CuCl x Br1?x," Crystal, Mol. Simul., vol. 23, pp. 127-142, 1999.
  9. F. El Haj Hassan and A. Zaoui, "Electronic structure of CuClxBr1-x, CuClxI1-x and CuBrxI1-x alloys," Superlattices and Microstructures, vol. 30, 2, pp. 75-80, 2001.
  10. S. Baroni, S. De Gironcoli, A. Dal Corso, and P. Giannozzi, "Phonons and related properties of extended systems from density-functional perturbation theory," Rev. Mod. Phys., vol. 73, pp. 515-562, 2001.
  11. J. P. Perdew and Y. Wang, "Perdew-wang '92 local spin density approximation," Phys. Rev. B., vol. 45, pp. 13244–13249, 1992.
  12. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, "Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation," Phys. Rev. B., vol. 46, 11, pp. 6671–6687, 1992.
  13. D. Vanderbilt, "Soft self-consistent pseudopotentials in a generalized eigenvalue formalism," Phys. Rev. B., vol. 41,11, pp. 7892-7895, 1990.
  14. P. R. DaSilveira, C. R. DaSilva, and R. M. Wentzcovitch, "Metadata management for distributed first principles calculations in VLab: A collaborative grid/portal system for geomaterials computations, American Geophysical Union, Fall Meeting 11A-1151," 2006.
  15. Z. Q. Wu and R. M. Wentzcovitch, "Pressure-volume-temperature relations in MgO: An ultrahigh pressure-temperature scale for planetary sciences applications," J. Geophys. Res., vol. 113, p. B06204, 2008.
  16. T. Sun and K. Umemoto, "Lattice dynamics and thermal equation of state of platinum," Phys. Rev. B., vol. 78, 2, p. 024304, 2008.
  17. G. Li, H. Zhou, and T. Gao, "Structural, vibrational and thermodynamic properties of zirconium–cobalt: First-principles study," Journal of Nuclear Materials, vol. 424, pp. 220–223, 2012.
  18. A. E. Dwight, "CsCl-type equiatomic phases in binary alloys of transition metals," Trans. Met. Soc. AIME., vol. 215, pp. 283–286, 1959.
  19. C. Lee and X. Gonze, "Ab initio calculation of the thermodynamic properties," Phys. Rev. B., vol. 51, pp. 8610-8613, 1995.
  20. J. D. Cox, D. D. Wagman, and V. A. Medvedev, CODATA key values for thermodynamics. New York: Hemisphere Publishing Corp, 1989.
  21. J. B. Pedley, "Thermochemical data and structures of organic compounds, thermodynamic research center, Texas A & M University, College Station, TX," 1994.

Statistics:

Google Scholor ideas Microsoft Academic Search bing Google Scholor

Funding:

Competing Interests:

Acknowledgement:


Related Article