International Journal of Sustainable Agricultural Research

Published by: Conscientia Beam
Online ISSN: 2312-6477
Print ISSN: 2313-0393
Quick Submission    Login/Submit/Track

Recent Articles

A Multi-Criteria Decision Analysis of Wheat Production Sustainability in the Semi-Arid Environment of Mashhad, Northeastern Iran

Pages: 1-16
Find References

Finding References

A Multi-Criteria Decision Analysis of Wheat Production Sustainability in the Semi-Arid Environment of Mashhad, Northeastern Iran

Search :
Google Scholor
Search :
Microsoft Academic Search

DOI: 10.18488/journal.70.2021.81.1.16

Azam Lashkari , Masoud Irannezhad

Export to    BibTeX   |   EndNote   |   RIS

Ahmadvand, M., & Karami, E. (2009). A social impact assessment of the floodwater spreading project on the Gareh-Bygone plain in Iran: A causal comparative approach. Environmental Impact Assessment Review, 29(2), 126-136.Available at:

Ahmed, G. h., Hamrick, D., Guinn, A., Abdulsamad, A., & Gereffi, G. (2013). Global value analysis of food security and food satples for major energy-exporting nations in the Middle East and North Africa (pp. 1-51). Duke University, Center on Globalization, Goverance and Competitiveness (Duke CGGC).

Ali-Beigi, A., & Baboli, M. (2008). Evaluation of the agricultural sustainability of irrigated wheat farmers of Sarpol-Zahab: Application of DSR. Model. Iranian Journal of Agricultural Economics and Development, 39(1), 111-122.

Amini, A., Nouri, S. A., & Aslani, S. B. (2015). Evaluation of rice production sustainability using multi criteria decision making methods: The case of rezvanshahr county. Iranian Agricultural Extension and Education Journal, 11(1), 101-126.

Ananda, J., & Herath, G. (2009). A critical review of multi-criteria decision making methods with special reference to forest management and planning. Ecological Economics, 68(10), 2535-2548.Available at:

Antunes, P., Santos, R., Videira, N., & Colaço, F. (2012). Approaches to integration in sustainability assessment of technologies. Guidelines for the application of mca-tools for the sustainability assessment of technologies in participatory contexts and weighing factors for environmental, economic, and social indicators. Report Prepared within the EC 7th Framework Project.

Balali, M. R. (2009). Towards reflexive land and water management in Iran linking technology, governanceand culture. Thesis, Wageningen University, Wageningen.  

Bannayan, M., Sanjani, S., Alizadeh, A., Lotfabadi, S. S., & Mohamadian, A. (2010). Association between climate indices, aridity index, and rainfed crop yield in Northeast of Iran. Field Crops Research, 118(2), 105-114.Available at:

Bartzas, G., & Komnitsas, K. (2020). An integrated multi-criteria analysis for assessing sustainability of agricultural production at regional level. Information Processing in Agriculture, 7(2), 223-232.Available at:

Belton, V., & Stewart, T. (2002). Multiple criteria decision analysis: An integrated approach (pp. 1-372): Springer Science and Business Media.

Bertsch, V., Treitz, M., Geldermann, J., Rentz, O., Charnock, T., & Benz, G. (2007). User guide for Web-HIPRE 2.0 with RODOS. 1-32. Retrieved from:

Bonny, B. P., Prasad, R., & Paulose, S. (2010). Agro-ecosystem performance Index (API)—A quantitative approach to evaluate the sustainability of rice production systems. Journal of Sustainable Agriculture, 34(7), 758-777.Available at:

Brodt, S., Six, J., Feenstra, G., Ingels, C., & Campbell, D. (2011). Sustainable agriculture. Nature Education Knowledge, 3(10), 1.

Chen, Y., Kilgour, D. M., & Hipel, K. W. (2012). A decision rule aggregation approach to multiple criteria-multiple participant sorting. Group Decision and Negotiation, 21(5), 727-745.Available at:

Clemetsen, M., & van Laar, J. (2000). The contribution of organic agriculture to landscape quality in the Sogn og Fjordane region of Western Norway. Agriculture, Ecosystems & Environment, 77(1-2), 125-141.Available at:

Dantsis, T., Douma, C., Giourga, C., Loumou, A., & Polychronaki, E. A. (2010). A methodological approach to assess and compare the sustainability level of agricultural plant production systems. Ecological Indicators, 10(2), 256-263.Available at:

De Montis, A., De Toro, P., Droste-Franke, B., Omann, I., & Stagl, S. (2004). Assessing the quality of different MCDA methods. In M. Getzner, C. Spash, & S. Stagl (Eds.), Alternatives for Environmental Valuation (pp. 99-133). Abingdon, UK: Routledge.

Emadodin, I., Narita, D., & Bork, H. R. (2012). Soil degradation and agricultural sustainability: An overview from Iran. Environment, Development and Sustainability, 14(5), 611-625.Available at:

Eyshi, R. E., & Bannayan, M. (2011). Rainfed wheat yields under climate change in northeastern Iran. Meteorological Applications, 19(3), 346-354.

Fülöp, J. (2005). Introduction to decision making methods. BDEI-3 Workshop,Washington.

Gamito, S. (2010). Caution is needed when applying Margalef diversity index. Ecological Indicators, 10(2), 550-551.Available at:

Giampietro, M., Mayumi, K., & Munda, G. (2006). Integrated assessment and energy analysis: Quality assurance in multi-criteria analysis of sustainability. Energy, 31(1), 59-86.Available at:

Gliessman, S. R. (1990). Agroecology: Researching the ecological basis for sustainable agriculture. Ecological Series No. 78. New York: Springer-Verlag.

Glossary of Environment Statistics. (1997). Studies in methods. Series F, No. 67, United Nations, New York.

Golrag, M., Ghoddosi, J., & Mashayekhi, M. (2006). Socio-economic and environmental impact assessment of watershed management plans (Case study: Plan, organize Znjanrvd). Geographical Research, 21(4), 93-110.Available at:

Hayati, D., Ranjbar, Z., & Karami, E. (2010). Measuring agricultural sustainability. In: Lichtfouse E. (Eds.), Biodiversity, Biofuels, Agroforestry and Conservation Agriculture. Sustainable Agriculture Reviews (Vol. 5). Dordrecht: Springer.

Heink, U., & Kowarik, I. (2010). What are indicators? On the definition of indicators in ecology and environmental planning. Ecological Indicators, 10(3), 584-593.Available at:

Herath, H. G., Hardaker, J. B., & Anderson, J. R. (1982). Choice of varieties by Sri Lanka rice farmers: Comparing alternative decision models. American Journal of Agricultural Economics, 64(1), 87-93.Available at:

Hipel, K. W., Fang, L., & Heng, M. (2010). System of systems approach to policy development for global food security. Journal of Systems Science and Systems Engineering, 19(1), 1-21.Available at:

Ireavani, H., & Darban-Astaneh, A. (2004). Measurement, analysis exploitation of the sustainability of farming systems (case study: Wheat production, Tehran province). Journal of Agricultural Sciences, Iran, 35(1), 39–52.

Jahani, M., Koocheki, A., Nassiri, M. M., & Rezvani, M. P. (2011). Investigation of agrobiodiversity in eastern region of Mashhad using general linear model. Ph.D Dissertation, Ferdowsi university of Mashhad, Iran.  

Karamidehkordi, E. (2010). A country report: Challenges facing Iranian agriculture and natural resource management in the twenty-first century. Human Ecology, 38(2), 295-303.Available at:

Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives: Preferences and value trade-offs. Cambridge, UK: Cambridge University Press.

Khalili, N. R., & Duecker, S. (2013). Application of multi-criteria decision analysis in design of sustainable environmental management system framework. Journal of Cleaner Production, 47, 188-198.Available at:

Khodashenas, A. R. (2008). Investigation of structural biodiversity in winter wheat fields of Khorasan province. Ph.D Dissertation, Ferdowsi University of Mashhad, Iran.  

Khorasan Jehad-Agriculture Organization. (2013). Statistics of agricultural products in Khorasan province. Retrieved from: .

Kropff, M., Bouma, J., & Jones, J. (2001). Systems approaches for the design of sustainable agro-ecosystems. Agricultural Systems, 70(2-3), 369-393.Available at:

Lioubimtseva, E., & Henebry, G. M. (2009). Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. Journal of Arid Environments, 73(11), 963-977.Available at:

López-Ridaura, S., Masera, O., & Astier, M. (2002). Evaluating the sustainability of complex socio-environmental systems. The MESMIS framework. Ecological Indicators, 2(1-2), 135-148.Available at:

Mahdavi, D. A., Koocheki, A., Rezvani, M. P., & Nassiri, M. M. (2005). Ecological sustainability of a wheat-cotton agroecosystem in Khorassan. Iranian Journal of Field Crops Research, 3(1), 129-142

Makowski, D., Tichit, M., Guichard, L., Van Keulen, H., & Beaudoin, N. (2009). Measuring the accuracy of agro-environmental indicators. Journal of Environmental Management, 90, S139-S146.Available at:

Margalef, R. (1958). Information theory in biology. General Systems Yearbook, 3, 36-71.

Marttunen, M., & Hämäläinen, R. P. (2008). The decision analysis interview approach in the collaborative management of a large regulated water course. EnMan, 42(6), 1026-1042.

Munda, G. (2008). The issue of consistency: Basic discrete multi-criteria“Methods”. In Social Multi-Criteria Evaluation for a Sustainable Economy (pp. 85–109). Berlin, Germany: Springer.

Mustajoki, J., & Marttunen, M. (2013). Comparison of multi-criteria decision analytical software. Finnish Environment Institute. IMPERIA Project Report.

OECD Organization for Economic Co-operation and Development. (2011). JRC, Joint research centre. 2011. Handbook on constructing composite indicators. Methodology and user guide. Paris: OECD.

Pham, L. V., & Smith, C. (2013). Agricultural sustainability in developing countries: An assessment of the relationships between drivers and indicators in Hoa Binh Province, Vietnam. Agroecology and Sustainable food Systems, 37(10), 1144-1186.Available at:

Portmann, F. T., Siebert, S., & Döll, P. (2010). MIRCA 2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles, 24(1), 1-24.Available at:

Poursaeed, A., Mirdamadi, M., Malekmohammadi, I., & Hosseini, J. F. (2010). The partnership models of agricultural sustainable development based on multiple criteria decision making (MCDM) in Iran. African Journal of Agricultural Research, 5(23), 3185-3190.

Rao, N. H., & Rogers, P. P. (2006). Assessment of agricultural sustainability. Current Science, 91(4), 439-448.

Reed, B., Chan-Halbrendt, C., Tamang, B. B., & Chaudhary, N. (2014). Analysis of conservation agriculture preferences for researchers, extension agents, and tribal farmers in Nepal using Analytic Hierarchy Process. Agricultural Systems, 127, 90-96.Available at:

Rigby, D., Woodhouse, P., Young, T., & Burton, M. (2001). Constructing a farm level indicator of sustainable agricultural practice. Ecological Economics, 39(3), 463-478.Available at:

Roy, R., Chan, N. W., & Rainis, R. (2013). Development of indicators for sustainable rice farming in Bangladesh: A case study with participative multi-stakeholder involvement. World Applied Science Journal, 22(5), 672-682.

Rozman, Č., Potočnik, M., Pažek, K., Borec, A., Majkovič, D., & Bohanec, M. (2009). A multi-criteria assessment of tourist farm service quality. Tourism Management, 30(5), 629-637.Available at:

Shabani, M. (2010). Optimization impact of land use on soil erosion and profitability of the watershed basin case study: Fars watershed Zakhrd. Geography, 3(8), 83-98.

Shahi, H., Irvani, H., & Kalantari, K. (2009). Assess the sustainability of conservation farming cooperatives of wheat producers covered by the Fars province. Journal of Economic Research and Agricultural Development in Iran, 2, 40(2), 135-143.

Shannon, C. E., & Weaver, W. (1963). The mathematical theory of communication. Illinois: The University of Illinois Press.

Shiferaw, B., Smale, M., Braun, H.-J., Duveiller, E., Reynolds, M., & Muricho, G. (2013). Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security, 5(3), 291-317.Available at:

Simpson, E. H. (1949). Measurement of diversity. Nature, 163(4148), 688-688.

Stobbelaar, D. J., Kuiper, J., van Mansvelt, J. D., & Kabourakis, E. (2000). Landscape quality on organic farms in the Messara valley, Crete: Organic farms as components in the landscape. Agriculture, Ecosystems & Environment, 77(1-2), 79-93.Available at:

Sustainable Development Strategy Research Group of SAC. (2004). Strategic report: China ’s sustainable development. Beijing: Science Press.

Szeląg-Sikora, A., Cupiał, M., & Niemiec, M. (2015). Intensity and labour consumption of integrated production in horticultural farms. Agriculture and Agricultural Science Procedia, 7, 249-254.Available at:

Talukder, B., Hipel, K. W., & vanLoon, G. W. (2018). Using multi-criteria decision analysis for assessing sustainability of agricultural systems. Sustainable Development, 26(6), 781-799.Available at:

Talukder., B. (2016). Multi-criteria decision analysis (MCDA) for agricultural sustainability assessment. Theses and Dissertations (Comprehensive). 1838.  

Thompson, P. B. (2007). Agricultural sustainability: What it is and what it is not. International Journal of Agricultural Sustainability, 5(1), 5-16.Available at:

Tiwari, D., Loof, R., & Paudyal, G. (1999). Environmental–economic decision-making in lowland irrigated agriculture using multi-criteria analysis techniques. Agricultural Systems, 60(2), 99-112.Available at:

Türkmen, G., & Kazanci, N. (2011). Applications of various biodiversity indices to benthic macroinvertebrate assemblages in streams of a national park in Turkey. International Review of Hydrobiology, 3(2), 111-125.

UN. (2015). United Nations (UN), transforming our world: The 2030 Agenda for sustainable development (UN General Assembly, A/RES/70/1, 2015). Retrieved from: .

United Nations Publications. (2007). Indicators of sustainable development: Guidelines and methologies (3rd ed., pp. 1-99). New York: United Nations Publications.

Veisi, H., Rezaei, M. E., Khoshbakht, K., Kambuozia, J., & Liaghati, H. (2015). An assessment of the impact of watershed programmes on agricultural sustainability in Hamedan province, Iran. International Journal of Agricultural Sustainability, 13(4), 308-325.Available at:

Vogdrup-Schmidt, M., Olsen, S. B., Dubgaard, A., Kristensen, I. T., Jørgensen, L. B., Normander, B., & Dalgaard, T. (2019). Using spatial multi-criteria decision analysis to develop new and sustainable directions for the future use of agricultural land in Denmark. Ecological Indicators, 103, 34-42.Available at:

Walz, R. (2000). Development of environmental indicator systems: Experiences from Germany. Environmental Management, 25(6), 613-623.Available at:

Wei, Y., Davidson, B., Chen, D., & White, R. (2009). Balancing the economic, social and environmental dimensions of agro-ecosystems: An integrated modeling approach. Agriculture, Ecosystems & Environment, 131(3-4), 263-273.Available at:

WHO World Health Organization. (1993). Guidelines for drinking water quality (Vol. 2, pp. 1-3). Geneva: World Health Organization.

Wolfslehner, B., & Seidl, R. (2010). Harnessing ecosystem models and multi-criteria decision analysis for the support of forest management. Environmental Management, 46(6), 850-861.Available at:

Zahedi, M. (2004). Functional necessities of employment development in the agricultural sector. Agricultural and Development Economics, 12(45), 41–67.

Zhen, L., & Routray, J. K. (2003). Operational indicators for measuring agricultural sustainability in developing countries. Environmental Management, 32(1), 34-46.Available at:

No any video found for this article.
Azam Lashkari , Masoud Irannezhad (2021). A Multi-Criteria Decision Analysis of Wheat Production Sustainability in the Semi-Arid Environment of Mashhad, Northeastern Iran. International Journal of Sustainable Agricultural Research, 8(1): 1-16. DOI: 10.18488/journal.70.2021.81.1.16
Globally, wheat is the most staple food for one-third of the population and provides more daily calories and protein than any other crop. However, its production still poses great social and environmental challenges for humanity. Hence, agricultural sustainability indices are commonly used to evaluate all economic, ecological, and social dimensions of crop production from theory into practice around the world. This assessed agricultural sustainability of irrigated (IWPS) and rainfed (RWPS) wheat production systems in the semi-arid environment of Mashhad (northeastern Iran). Data were obtained from irrigated and rainfed wheat farms in Mashhad for the growing seasons (Oct-May) during 2006-2010. The questionnaire was also designed to collect data from the farmers. A multi-criteria decision analysis (MCDA) was performed to identify the most significant economic, ecological, and social criteria influencing the agricultural sustainability index. The results determined that IWPS is more sustainable than RWPS in Mashhad as the economic viability for IWPS is relatively higher than that for RWPS. However, RWPS has also a high potential to achieve agricultural sustainability in environments without water stress. Finally, face-to-face interviews confirmed that farmers do not invest heavily in RWPS because of its high sensitivity to precipitation, temperature, and soil quality in Mashhad (northeastern Iran).
Contribution/ Originality
This study is one of very few studies which have investigated the agricultural sustainability (in all economic, ecological, and social dimensions) of both irrigated and rainfed wheat production systems in semi-arid environments using a multi-criteria decision analysis.

Interactive Effects of Zinc-Arbuscular Mycorrhizal (AM) Fungi on Cadmium Uptake, Rubisco, Osmolyte Synthesis and Yield in Cajanus cajan (L.) Millsp.

Pages: 17-42
Find References

Finding References

Interactive Effects of Zinc-Arbuscular Mycorrhizal (AM) Fungi on Cadmium Uptake, Rubisco, Osmolyte Synthesis and Yield in Cajanus cajan (L.) Millsp.

Search :
Google Scholor
Search :
Microsoft Academic Search

DOI: 10.18488/journal.70.2021.81.17.42

Harmanjit Kaur , Neera Garg

Export to    BibTeX   |   EndNote   |   RIS

Abad, A. K. J., & Khara, H. (2010). Effects of arbuscular mycorrhizal fungus (Glomus veruciforme) on changes of some physiological parameters in cadmium treated wheat plants. Pakistan Journal of Biological Sciences, 10, 4279-4282.Available at: 10.3923/pjbs.2007.4279.4282.

Adamczyk-Szabela, D., Katarzyna, L., Zdzisława, R.-D., & Wolf, W. M. (2020). Combined cadmium-zinc interactions alter manganese, lead, copper uptake by Melissa officinalis. Scientific Reports (Nature Publisher Group), 10, 1675.Available at:

Aghajanzadeh, T. A., Prajapati, D. H., & Burow, M. (2020). Differential partitioning of thiols and glucosinolates between shoot and root in Chinese cabbage upon excess zinc exposure. Journal of Plant Physiology, 244, 153088.

Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 1-14.Available at:

Anjum, N. A., Singh, H. P., Khan, M. I. R., Masood, A., Per, T. S., Negi, A., . . . Pereira, E. (2015). Too much is bad—an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions. Environmental Science and Pollution Research, 22(5), 3361-3382.Available at:

Arnon, D. (1949). E949. Copper enzymes in chloroplasts. Polyphenoh oxidases in Beta vuignris. Plant Physiol, 24, 1-15.Available at:

Arumugam, R., Rajasekaran, S., & Nagarajan, S. (2010). Response of Arbuscular mycorrhizal fungi and Rhizobium inoculation on growth and chlorophyll content of Vigna unguiculata (L) Walp Var. Pusa 151. Journal of Applied Sciences and Environmental Management, 14(4), 113-115.Available at: 10.4314/jasem.v14i4.63282.

Asgharipour, M., Khatamipour, M., & Razavi-Omrani, M. (2011). Phytotoxicity of cadmium on seed germination, early growth, proline and carbohydrate content in two wheat varieties. Advances in Environmental Biology, 5(4), 559-565.

Ayako, N.-Y., Yabuta, Y., & Shigeoka, S. (2008). The contribution of carbohydrates including raffinose family oligosaccharides and sugar alcohols to protection of plant cells from oxidative damage. Plant Signaling & Behavior, 3(11), 1016-1018.Available at: 10.4161/psb.6738.

Bates, L. (1973). Waldren. F. apiddetennmation of free proline for water stress study Plnrrt Sorl, 33, 205-208.Available at:

Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ahmed, N., . . . Zhang, L. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Science, 10, 1-15.Available at: 10.3389/fpls.2019.01068.

Biró, I., Nemeth, T., & Takács, T. (2009). Changes of parameters of infectivity and efficiency of different glomus mosseae arbuscular mycorrhizal fungi strains in cadmium-loaded soils. Communications in Soil Science and Plant Analysis, 40(1-6), 227-239.Available at:

Bradford, N. (1976). A rapid and sensitive method for the quantitation microgram quantities of a protein isolated from red cell membranes. Anal Biochem, 72, 248-254.Available at: 10.1006/abio.1976.9999.

Burleigh, S. H., & Bechmann, I. E. (2002). Plant nutrient transporter regulation in arbuscular mycorrhizas. Plant and Soil, 244(1-2), 247-251.

Carrenho, R., Alves, L. D. J., & Santos, I. D. S. (2018). Arbuscular mycorrhizal fungi, interactions with heavy metals and rehabilitation of abandoned mine lands. In: Prasad, M.N.V., Favas, P. de Campos., Maiti, S.K. (Eds), Bio-Geotechnologies for Mine Site Rehabilitation (pp. 261-279). USA: Elsevier.

Chapman, H. D., & Pratt, P. F. (1961). Methods of analysis for soils, plants and waters. Division of Agricultural Sciences (pp. 150-210). Berkley, USA: University of California.

Chen, S., Zhao, H., Zou, C., Li, Y., Chen, Y., Wang, Z., . . . Ahammed, G. J. (2017). Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Frontiers in Microbiology, 8, 25–16.Available at: 10.3389/fmicb.2017.02516.

Cherif, I., Mediouni, C., Ben Ammar, W., & Jemal, F. (2011). Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solanum lycopersicon). Journal of Environmental Sciences, 23(7), 837-844.Available at: 10.1016/s1001-0742(10)60415-9.

Clemens, S. (2001). Developing tools for phytoremediation: Towards a molecular understanding of plant metal tolerance and accumulation. International Journal of Occupational Medicine and Environmental Health, 14(3), 235-239.

Coccina, A., Cavagnaro, T. R., Pellegrino, E., Ercoli, L., McLaughlin, M. J., & Watts-Williams, S. J. (2019). The mycorrhizal pathway of zinc uptake contributes to zinc accumulation in barley and wheat grain. BMC Plant Biology, 19(1), 1-14.

Cui, G., Ai, S., Chen, K., & Wang, X. (2019). Arbuscular mycorrhiza augments cadmium tolerance in soybean by altering accumulation and partitioning of nutrient elements, and related gene expression. Ecotoxicology and Environmental Safety, 171, 231–239.Available at:

Doidy, J., Grace, E., Kühn, C., Simon-Plas, F., Casieri, L., & Wipf, D. (2012). Sugar transporters in plants and in their interactions with fungi. Trends in Plant Science, 17, 413-422.Available at:

Dražić, G., Mihailović, N., & Stojanović, Z. (2004). Cadmium toxicity: the effect on macro-and micro-nutrient contents in soybean seedlings. Biologia Plantarum, 48(4), 605-607.

El-Beltagi, H. S., Mohamed, A. A., & Rashed, M. M. (2010). Response of antioxidative enzymes to cadmium stress in leaves and roots of radish (Raphanus sativus L.). Notulae Scientia Biologicae, 2(4), 76-82.

El-Beltagi., H. S., & Mohamed, H. I. (2013). Alleviation of cadmium toxicity in Pisum sativum L. seedlings by calcium chloride. Notulae Botanicae Horti Agrobotanici, 41, 157–168.Available at:

Fair, P., Tew, J., & Cresswell, C. (1973). Enzyme activities associated with CO2 exchange in illuminated leaves of Hordeum vulgare L. effect of light period, leaf age and position on CO2 compensation point. Annals of Botany, 37(4), 831-844.

Feigl, G., Molnár, Á., Szőllősi, R., Ördög, A., Törőcsik, K., Oláh, D., . . . Kolbert, Z. (2019). Zinc-induced root architectural changes of rhizotron-grown B. napus correlate with a differential nitro-oxidative response. Nitric Oxide, 90, 55-65.Available at: 10.1016/j.niox.2019.06.003.

Ferrol, N., Tamayo, E., & Vargas, P. (2016). The heavy metal paradox in arbuscular mycorrhizas: From mechanisms to biotechnological applications. Journal of Experimental Botany, 67(6253–6265).Available at: 10.1093/jxb/erw403.

Fodor, F., Gáspár, L., Morales, F., Gogorcena, Y., Lucena, J. J., Cseh, E., . . . Sárvári, É. (2005). Effects of two iron sources on iron and cadmium allocation in poplar (Populus alba) plants exposed to cadmium. Tree Physiology, 25(9), 1173-1180.Available at: 10.1093/treephys/25.9.1173.

Garcia, K., & Zimmermann, S. (2014). The disregarded mycorrhizal contribution to plant potassium nutrition. Frontiers in Plant Science, 5, 337.Available at: 10.3389/fpls.2014.00337.

Garg, N., & Kaur, H. (2013). Response of antioxidant enzymes, phytochelatins and glutathione production towards Cd and Zn stresses in Cajanus cajan (L.) Millsp. genotypes colonized by arbuscular mycorrhizal fungi. Journal of Agronomy and Crop Science, 199(2), 118-133.Available at:

Garg, N., & Singh, S. (2018). Arbuscular mycorrhiza Rhizophagus irregularis and silicon modulate growth, proline biosynthesis and yield in Cajanus cajan L. Millsp.(pigeonpea) genotypes under cadmium and zinc stress. Journal of Plant Growth Regulation, 37(1), 46-63.Available at:

Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol, 84, 489–500.Available at:

Gonçalves, J. F., Antes, F. G., Maldaner, J., Pereira, L. B., Tabaldi, L. A., Rauber, R., . . . de Moraes Flores, E. M. (2009). Cadmium and mineral nutrient accumulation in potato plantlets grown under cadmium stress in two different experimental culture conditions. Plant Physiology and Biochemistry, 47(9), 814-821.Available at: 10.1016/j.plaphy.2009.04.002.

Grieve, C., & Grattan, S. (1983). Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and Soil, 70(2), 303-307.

Gupta, A. K., & Sinha, S. (2006). Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: Selection of single extractants. Chemosphere, 64(1), 161-173.Available at:

Hasanuzzaman, M., Banerjee, A., Bhuyan, M. B., Roychoudhury, A., Al Mahmud, J., & Fujita, M. (2019). Targeting glycinebetaine for abiotic stress tolerance in crop plants: physiological mechanism, molecular interaction and signaling. Phyton, 88(3), 185-221.Available at: 10.32604/phyton.2019.07559.

Hashem, A., Abd_Allah, E. F., Alqarawi, A. A., Aldubise, A., & Egamberdieva, D. (2015). Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. Journal of Plant Interactions, 10(1), 230-242.Available at:

Helgason, T., & Fitter, A. H. (2009). Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota). Journal of Experimental Botany, 60(9), 2465-2480.

Hidelbrant, U., Regvar, M., & Bothe, H. (2007). Asbuscular micorrhiza and heavy metals tolerance. Phytochemisty, 68, 138-146.Available at: 10.1016/j.phytochem.2006.09.023.

Hiscox, J., & Israelstam, G. (1979). Different methods of chlorophyll extraction. Canadian Journal of Chemistry, 57, 1332-1334.Available at:

Huang, Z., Zhao, L., Chen, D., Liang, M., Liu, Z., Shao, H., & Long, X. (2013). Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets. PLoS ONE, 8, e62085.Available at: 10.1371/journal.pone.0062085.

Huang, X., Ho, S.-H., Zhu, S., Ma, F., Wu, J., Yang, J., & Wang, L. (2017). Adaptive response of arbuscular mycorrhizal symbiosis to accumulation of elements and translocation in Phragmites australis affected by cadmium stress. Journal of Environmental Management, 197, 448-455.Available at:

Irigoyen, J., Einerich, D., & Sánchez-Díaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants. Physiologia Plantarum, 84(1), 55-60.Available at:

Islam, M. M., Hoque, M. A., Okuma, E., Jannat, R., Banu, M. N. A., Jahan, M. S., . . . Murata, Y. (2009). Proline and glycinebetaine confer cadmium tolerance on tobacco bright yellow-2 cells by increasing ascorbate-glutathione cycle enzyme activities. Bioscience, Biotechnology, and Biochemistry, 73, 2320-2323.Available at:

Ismael, M. A., Elyamine, A. M., Moussa, M. G., Cai, M., Zhao, X., & Hu, C. (2019). Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics, 11(2), 255-277.Available at:

Jacobsen, I., Smith, S. E., & Smith, F. A. (2002). Function and diversity of arbuscular mycorrhizae in carbon and mineral nutrition,” In: M. G. A. van der heijden and I. R. Sanders (Eds.) Mycorrhizal ecology (pp. 75-92). New York: Springer-Verlag Berlin, Heidelberg.

Jain, R., Srivastava, S., S. Solomon, Shrivastava, A. K., & Chandra, A. (2010). Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.). Acta Physiologiae Plantarum, 32, 979-986.Available at: 10.1007/s11738-010-0487.

Jaleel, C. A., Changxing, Z., Jayakumar, K., & Iqbal, M. (2009). Low concentration of cobalt increases growth, biochemical constituents, mineral status and yield in Zea mays. Journal of Scientific Research, 1(1), 128-137.Available at: 10.3329/jsr.v1i1.1226.

Jia-Dong, H., Tao, D., Hui-Hui, W., Zou, Y. N., Wu, Q. S., & Kamil, K. (2019). Mycorrhizas induce diverse responses of root TIP aquaporin gene expression to drought stress in trifoliate orange. Scientia Horticulturae, 243, 64–69.Available at:

Kanwal, S., Bano, A., & Malik, R. N. (2015). Effects of arbuscular mycorrhizal fungi on metals uptake, physiological and biochemical response of Medicago sativa L. with increasing Zn and Cd concentrations in soil. American Journal of Plant Sciences, 6(18), 2906-2923.Available at: 10.4236/ajps.2015.618287.

Karcz, W., & Kurtyka, R. (2007). Effect of cadmium on growth, proton extrusion and membrane potential in maize coleoptile segments. Biologia Plantarum, 51(4), 713-719.Available at:

Kaur, H., & Garg, N. (2017). Zinc-arbuscular mycorrhizal interactions: effect on nutrient pool, enzymatic antioxidants, and osmolyte synthesis in pigeonpea nodules subjected to Cd stress. Communications in Soil Science and Plant Analysis, 48(14), 1684-1700.Available at:

Khan, K., Moses, S., & Kumar, A. (2017). Physical properties of pigeon pea grains at different moisture content. International Journal of Pure and Applied Bioscience, 5(2), 556-562.Available at: .

Kolahi, M., Kazemi, E. M., Yazdi, M., & Goldson-Barnaby, A. (2020). Oxidative stress induced by cadmium in lettuce (Lactuca sativa Linn.): Oxidative stress indicators and prediction of their genes. Plant Physiology and Biochemistry, 146, 71-89.Available at:

Koleva, L., Semerdjieva, I., Nikolova, A., & Vassilev, A. (2010). Comparative morphological and histological study on zinc-and cadmium-treated durum wheat plants with similar growth inhibition. General and Applied Plant Physiology, 36(1/2), 8-11.

Krishnamoorthy, R., Kim, C.-G., Subramanian, P., Kim, K.-Y., Selvakumar, G., & Sa, T.-M. (2015). Arbuscular mycorrhizal fungi community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration. PLoS One, 10(6), e0128784.Available at:

Kumar, P., Lucini, L., Rouphael, Y., Cardarelli, M., Kalunke, R. M., & Colla, G. (2015). Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato. Frontiers in Plant Science, 6, 1-16.Available at: 10.3389/fpls.2015.00477.

Laspina, N., & Groppa, M. (2005). Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci, 169, 323-330.Available at:

Lee, Y. P., & Takahashi, T. (1966). An improved colorimetric determination of amino acids with the use of ninhydrin. Analytical Biochemistry, 14(1), 71-77.Available at:

Lee, K. R., & Roh, K. S. (2003). Influence of cadmium on rubisco activation inCanavalia ensiformis L. leaves. Biotechnology and Bioprocess Engineering, 8(2), 94-100.Available at:

Leport, L., Turner, N. C., Davies, S., & Siddique, K. (2006). Variation in pod production and abortion among chickpea cultivars under terminal drought. European Journal of Agronomy, 24(3), 236-246.Available at:

Li, T., Hu, J. L., Hao, Z. P., Li, H., Wang, Y. S., & Chen, B. D. (2013). First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytol, 197, 617–630.Available at: 10.1111/nph.12011.

Lindner, R. (1944). Rapid analytical methods for some of the more common inorganic constituents of plant tissues. Plant Physiology, 19(1), 76-89.Available at:

Liu, Z., He, X., Chen, W., Yuan, F., Yan, K., & Tao, D. (2009). Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator- Lonicera japonica Thunb. Journal of Hazardous Materials, 169, 170-175.Available at:

Liu, C. (2011). Effects of cadmium and salicylic acid on growth, spectral reflectance and photosynthesis of castor bean seedlings. Plant Soil, 344(1), 131-141.

Liu, Z., Chen, W., & He, X. (2011). Cadmium-induced changes in growth and antioxidative mechanisms of a medicine plant (Lonicera japonica Thunb.). Journal of Medicinal Plants Research, 5(8), 1411-1417.Available at:

Maggio, A., Miyazaki, S., Veronese, P., Fujita, T., Ibeas, J. I., Damsz, B., . . . Bressan, R. A. (2002). Does proline accumulation play an active role in stress-induced growth reduction? The Plant Journal, 31(6), 699-712.Available at: 10.1046/j.1365-313x.2002.01389.x.

Meena, M., Divyanshu, K., Kumar, S., Swapnil, P., Zehra, A., Shukla, V., . . . Upadhyay, R. (2019). Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon, 5(12), e02952.Available at: 10.1016/j.heliyon.2019.e02952.

Mehlich, A. (1953). Determination of P, Ca, Mg, K, Na and NH4 (pp. 16). North Carolina Soil Test Division, Department of Agriculture, Raleigh, North Carolina, Mimeo 1953.

Miyasaka, S. C., Habte, M., Friday, J. B., & Johnson, E. V. (2003). Manual on arbuscular mycorrhizal fungus production and inoculation techniques (pp. 4). Honolulu (HI): University of Hawaii. (Soil and Crop Management; SCM-5).

Muneer, S., Qadri, T. N., & Siddiqi, T. (2011). Cytogenetic and biochemical investigations to study the response of Vigna radiata to cadmium stress. African Journal of Plant Science, 5(3), 183-192.Available at:

Mysliwa-Kurdziel, B., Prasad, M. N. V., & Strzalka, K. (2004). Photosynthesis in metal stressed plants,” In: M. N. V. Prasad (Ed) Heavy metal stress in plants: From biomolecules to ecosystems (2nd ed., pp. 146-181). Heidelberg, Narosa, New Delhi: Springer-Verla.

Nayuki, K., Chen, B., Ohtomo, R., & Kuga, Y. (2014). Cellular imaging of cadmium in resin sections of arbuscular mycorrhizas using synchrotron micro X-ray fluorescence. Microbes and Environments, 29(60), 60-66.

Nelson, D. W., & Sommers, L. E. (1980). Total nitrogen analysis of soil and plant tissues. Journal of the Association of Official Analytical Chemists, 63(4), 770-778.Available at:

Olsen, S. R., & Sommers, L. E. (1982). Phosphorus,” In: A. L. Page, (Ed) Methods of soil analysis, Agron. No. 9, Part 2: Chemical and microbiological properties (2nd ed.). Madison, WI, USA: American Society of Agronomy.

Pathak, G. C., Gupta, B., & Pandey, N. (2012). Improving reproductive efficiency of chickpea by foliar application of zinc. Brazilian Journal of Plant Physiology, 24(3), 173-180.Available at:

Perveen, R., Faizan, S., Tiyagi, S. A., & Kausar, S. (2011). Performance of Cd stress condition on growth and productivity parameters of Trigonella foenum-graecum Linn. World Journal of Agricultural Sciences, 7(5), 607-612.

Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 158-161.Available at:

Qiu, Q., Wang, Y., Yang, Z., & Yuan, J. (2011). Effects of phosphorus supplied in soil on subcellular distribution and chemical forms of cadmium in two Chinese flowering cabbage (Brassica parachinensis L.) cultivars differing in cadmium accumulation. Food and Chemical Toxicology, 49(9), 2260-2267.Available at: 10.1016/j.fct.2011.06.024.

Rask, K. A., Johansen, J. L., Kjøller, R., & Ekelund, F. (2019). Differences in arbuscular mycorrhizal colonisation influence cadmium uptake in plants. Environmental and Experimental Botany, 162, 223-229.Available at: 10.1016/j.envexpbot.2019.02.022.

Rivera-Becerril, F., van Tuinen, D., Martin-Laurent, F., Metwally, A., Dietz, K.-J., Gianinazzi, S., & Gianinazzi-Pearson, V. (2005). Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza, 16(1), 51-60.Available at: 10.1007/s00572-005-0016-7.

Schubler, A., & Walker, C. (2010). The Glomeromycota: A species list with new families and genera,” Edinburgh & Kew, UK, The Royal Botanic Garden; Munich, Germany: Botanische Staatssammlung Munich and Oregon. USA: Oregon State University.

Senbayram, M., Gransee, A., & Wahle, V. (2015). Role of magnesium fertilisers in agriculture: Plant–soil continuum. Crop & Pasture Science, 66, 1219-1229.Available at:

Sharma, S. S., & Dietz, K. J. (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany, 57, 711-726.Available at:

Shekoofeh, E., Sepideh, H., & Roya, R. (2012). Role of mycorrhizal fungi and salicylic acid in salinity tolerance of Ocimum basilicum resistance to salinity. African Journal of Biotechnology, 11, 2223–2235.Available at: 10.5897/AJB11.1672.

Sheng, M., Tang, M., Chan, H., Yang, B., Zhang, F., & Huang, Y. (2008). Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18, 287–296.Available at:

Shukla, U., Murthy, R., & Kakkar, P. (2008). Combined effect of ultraviolet-B radiation and cadmium contamination on nutrient uptake and photosynthetic pigments in Brassica campestris L. seedlings. Environmental Toxicology: An International Journal, 23(6), 712-719.Available at: 10.1002/tox.20378.

Srivastava, R., Khan, R., Manzoor, N., & Mahmooduzzafar. (2011). Responses of cadmium exposures on growth, physio-biochemical characteristics and the antioxidative defence system of soybean. Journal Phytol, 3(10), 20-25.

Tandon, P. K., & Srivastava, M. (2004). Effect of cadmium and nickel on metabolism during early stages of growth in gram (Cicer arietinum L.) seeds. Indian Journal of Agricultural Biochemistry, 17(1), 31-34.

Thompson, A. R., & Vierstra, R. D. (2005). Autophagic recycling: Lessons from yeast help define the process in plants. Current Opinion in Plant Biology, 8(2), 165-173.

Van der Heijden, E. W., & Kuyper, T. W. (2001). Does origin of mycorrhizal fungus or mycorrhizal plant influence effectiveness of the mycorrhizal symbiosis? Plant and Soil, 230(2), 161-174.Available at:

Vassilev, A., Perez-Sanz, A., Cuypers, A., & Vangronsveld, J. (2007). Tolerance of two hydroponically grown Salix genotypes to excess zinc. Journal of Plant Nutrition, 30(9), 1471-1482.Available at:

Vijayaragavan, M., Prabhahar, C., Sureshkumar, J., Natarajan, A., Vijayarengan, P., & Sharavanan, S. (2011). Toxic effect of cadmium on seed germination, growth and biochemical contents of cowpea (Vigna unguiculata L.) plants. International multidisciplinary research journal, 1(5), 1-6.

Walkley, A. (1947). A critical examination of a rapid method for determining organic carbon in soils—effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63(4), 251-264.

Wang, H., Zhao, S., Liu, R., Zhou, W., & Jin, J. (2009). Changes of photosynthetic activities of maize (Zea mays L.) seedlings in response to cadmium stress. Photosynthetica, 47(2), 277-283.Available at:

Whetherley, P. (1950). Studies in the water relations of cotton plants. I. The field measurement of water deficit in leaves. New Phytol., 49, 81-87.Available at:

Wu, N., Li, Z., Wu, F., & Tang, M. (2016). Comparative photochemistry activity and antioxidant responses in male and female Populus cathayana cuttings inoculated with arbuscular mycorrhizal fungi under salt. Scientific Reports, 6, 37663.Available at:

Wu, C., Dun, Y., Zhang, Z., Li, M., & Wu, G. (2020). Foliar application of selenium and zinc to alleviate wheat (Triticum aestivum L.) cadmium toxicity and uptake from cadmium-contaminated soil. Ecotoxicology and Environmental Safety, 190, 110091.Available at: 10.1016/j.ecoenv.2019.110091.

Xu, J., Sun, J., Du, L., & Liu, X. (2012). Comparative transcriptome analysis of cadmium responses in Solanum nigrum and Solanum torvum. New Phytologist, 196(1), 110-124.

Yang, L. P., Zhu, J., Wang, P., Zeng, J., Tan, R., Yang, Y. Z., & Liu, Z. M. (2018). Effect of Cd on growth, physiological response, Cd subcellular distribution and chemical forms of Koelreuteria paniculata. Ecotoxicology and Environmental Safety, 160, 10-18.Available at: 10.1016/j.ecoenv.2018.05.026.

Yousuf, P. Y., Ahmad, H. A., Ganie, A. H., Aref, I. M., & Iqbal, M. (2015). Potassium and calcium application ameliorates growth and oxidative homeostasis in salt stressed Indian mustard (Brassica juncea) Plants. Pakistan Journal of Botany, 47(5), 1629–1639.

Zaefarian, F., Rezvani, M., Rejali, F., Ardakani, M. R., & Noormohammadi, G. (2011). Effect of heavy metals and arbuscular mycorrhizal fungal on growth and nutrients (N, P, K, Zn, Cu and Fe) accumulation of alfalfa (Medicago sativa L.). American-Eurasian Journal of Agricultural & Environmental Sciences, 11(3), 346-352.

Zare, A., Khoshgoftarmanesh, A., Malakouti, M., Bahrami, H., & Chaney, R. (2018). Root uptake and shoot accumulation of cadmium by lettuce at various Cd: Zn ratios in nutrient solution. Ecotoxicology and Environmental Safety, 148, 441-446.Available at: 10.1016/j.ecoenv.2017.10.045.

Zhang, S., Zhou, J., Wang, G., Wang, X., & Liao, H. (2015). The role of mycorrhizal symbiosis in aluminum and phosphorus interactions in relation to aluminum tolerance in soybean. Applied Microbiology and Biotechnology, 99, 10225–10235.Available at: 10.1007/s00253-015-6913-6.

Zhou, J., Cheng, K., Huang, G., Chen, G., Zhou, S., Huang, Y., . . . Fan, H. (2020). Effects of exogenous 3-indoleacetic acid and cadmium stress on the physiological and biochemical characteristics of Cinnamomum camphora. Ecotoxicology and Environmental Safety, 191, 109998.Available at:

Zhu, G., Xiao, H., Guo, Q., Zhang, Z., Zhao, J., & Yang, D. (2018). Effects of cadmium stress on growth and amino acid metabolism in two Compositae plants. Ecotoxicology and Environmental Safety, 158, 300-308.Available at: 10.1016/j.ecoenv.2018.04.045.

Zouari, M., Ahmed, C. B., Zorrig, W., Elloumi, N., Rabhi, M., Delmail, D., . . . Abdallah, F. B. (2016). Exogenous proline mediates alleviation of cadmium stress by promoting photosynthetic activity, water status and antioxidative enzymes activities of young date palm (Phoenix dactylifera L.). Ecotoxicology and Environmental Safety, 128, 100-108.Available at: 10.1016/j.ecoenv.2016.02.015.

No any video found for this article.
Harmanjit Kaur , Neera Garg (2021). Interactive Effects of Zinc-Arbuscular Mycorrhizal (AM) Fungi on Cadmium Uptake, Rubisco, Osmolyte Synthesis and Yield in Cajanus cajan (L.) Millsp.. International Journal of Sustainable Agricultural Research, 8(1): 17-42. DOI: 10.18488/journal.70.2021.81.17.42
Cadmium (Cd) and Zinc (Zn) are two closely associated chemical elements having varied biological roles. Cd is a non-essential noxious element whereas Zn is an indispensable micronutrient at low concentrations but toxic to plants at higher levels. At the root surface, Cd competes with Zn for the same transmembrane carriers and Zn reduces Cd uptake in plants. Arbuscular mycorrhizal (AM) fungi are considered potential biotechnological approach for increasing plant tolerance to Cd-polluted soils. Applications of Zn and AM fungal inoculations might augment metal tolerance by reducing Cd uptake through their interactive effects. Thus, experiments were carried out to investigate the interplay between Zn (500 and 1000 mg kg-1 dry soil) and AM fungus [Funneliformis mosseae (T.H. Nicolson & Gerd.) C. Walker & A. Schüßler] on growth, nutrient management, photosynthetic efficiency, osmotic equilibrium and productivity in two pigeonpea (Cajanus cajan (L.) Millsp.) genotypes (Tolerant- Sel 85N and Sensitive- P792) exposed to Cd stress (25 and 50 mg kg-1 dry soil). Results revealed that accumulation of Cd and Zn individually reduced plant dry matter, total chlorophyll contents, Rubisco activity and nutrient uptake resulting in loss of yield, with Cd proving to be more toxic. However, Zn and AM reduced Cd uptake and their combined treatments enhanced plant biomass, photosynthetic ability and harvest index (HI) significantly by providing osmotic balance (total soluble sugars, free amino acids, proline, glycine betaine). The effects were more discernible in Sel 85N than P792 which could be directly correlated with its better ability for mycorrhizal colonization under stress.
Contribution/ Originality
This study documents concomitant application of Zn and AM fungi as an economically feasible strategy in increasing the tolerance as well as yield potential of pigeonpea genotypes subjected to Cd stress by improving photosynthetic ability, nutrient status and osmoprotection.

Characterization of a Novel Floral Mutation Induced by Gamma Irradiation of Philippine Rice Variety NSIC Rc9 (Apo)

Pages: 43-55
Find References

Finding References

Characterization of a Novel Floral Mutation Induced by Gamma Irradiation of Philippine Rice Variety NSIC Rc9 (Apo)

Search :
Google Scholor
Search :
Microsoft Academic Search

DOI: 10.18488/journal.70.2021.81.43.55

Christopher C. Cabusora , Nenita V. Desamero , Teresita H. Borromeo , Rj D. Buluran , Jose E. Hernandez , Pompe C. Sta. Cruz

Export to    BibTeX   |   EndNote   |   RIS

Akbar, A. C., & Babar, M. (2003). Radiosensitivity studies in basmati rice. Pakistan Journal of Botany, 35(2), 197-207.

Al-Salhi, M., Ghannam, M. M., Al-Ayed, M. S., El-Kameesy, S. U., & Roshdy, S. (2004). Effect of γ-irradiation on the biophysical and morphological properties of corn. Food/Nahrung, 48(2), 95-98.Available at:

Ao, H. J., Wang, S. H., Zou, Y. B., Peng, S. B., Tang, Q. Y., Fang, Y. X., . . . Xiong, C. M. (2008b). Study on yield stability and dry matter characteristics of super hybrid rice. Scientia Agricultura Sinica, 41(7), 1927-1936.

Baker, H. G., & Baker, I. (1979). Starch in angiosperm pollen grains and its evolutionary significance. American Journal of Botany, 66(5), 591-600.Available at:

Esnault, M., Legue, F., & Chenal, C. (2010). Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. Environmental and Experimental Botany, 68(3), 231-232.

Field Operations Manual. (2015). Philippine rice research Institute (Vol. 3119, pp. 35-50). Nueva Ecija, Philippines: Science City of Muňoz.

Gaul, H. (1977). Mutagen effects in the first generation after seed treatment (pp. 87-88). Manual on Mutation Breeding Technical Reports, 2nd Edition, Series No. 119.

Gegas, V. C., Nazari, A., Griffins, S., Simmonds, J., Fish, L., Orford, S., & Snape, J. W. (2010). A genetic framework for grain size and shape variation in wheat. The Plant Cell, 22(4), 1046-1056.Available at:

Gowthami, R., Vanniarajan, C., & Souframanien, J. (2016). Impact of gamma rays on pollen and spikelet fertility in rice (Oryza sativa L.). Advances in Life Sciences, 5(9), 3690 – 3695.

Hameed, A., Mahmud, T. S., Atta, B. M., Haq, M. A., & Sayed, H. (2008). Gamma irradiation effects on seed germination and growth, protein content, peroxidase and protease activity, lipid peroxidation in desi and kabuli chickpea. Pakistan Journal of Botany, 40(3), 1033–1041.

Hershberg, R. (2015). Mutation—the engine of evolution: Studying mutation and its role in the evolution of bacteria. Cold Spring Harbor Perspectives in Biology, 7(9), a018077.Available at:

Kato, Y., & Katsura, K. (2014). Rice adaptation to aerobic soils: Physiological considerations and implications for agronomy. Plant Production Science, 17(1), 1-12.Available at:

Kivi, E. I. (1964). Some aspects of sterility effects of irradiation on the basis of gamma and X-ray treated barley. In: The Use of Induced Mutations in Plant (pp. 131-158). Vienna: FAO/IAEA.

Koh, H. J., Lee, S. Y., Choi, M. S., & Lee, J. H. (2011). Characteristics and genetic segregation of a rolled leaf mutant in rice. Journal of the Korean Breeding Society, 43(4), 181-185.

Kurata, N., Miyoshi, K., Nonomura, K.-I., Yamazaki, Y., & Ito, Y. (2005). Rice mutants and genes related to organ development, morphogenesis and physiological traits. Plant and Cell Physiology, 46(1), 48-62.Available at:

Larik, A. (1975). Radiation-induced chromosome breakages in bread wheat (Triticum aestivum L.). Genetica Polonica, 16(3-4), 295-300.

Li, Y., Li, X., Fu, D., & Wu, C. (2018). Panicle morphology mutant 1 (PMM1) determines the inflorescence architecture of rice by controlling brassinosteroid biosynthesis. BMC Plant Biology, 18(1), 1-13.Available at:

Lodish, H., Berk, A., & Zipursky, S. L. (2000). Molecular cell biology (4th ed.). New York: W. H. Freeman; Section 8.1, Mutations: Types and Causes.

Lu, Y., Wang, X., Zhang, H., Huo, Z., Dai, Q., & Xu, K. (2008). A study on the yielding mechanism of different rice cultivars under-different planting density conditions. Jiangsu Journal of Agricultural Science, 1, 18-20.

Morita, R., Kusaba, M., Iida, S., Yamaguchi, H., Nishio, T., & Nishimura, M. (2009). Molecular characterization of mutations induced by gamma irradiation in rice. Genes & Genetic Systems, 84(5), 361-370.Available at:

National Cooperative Testing Manual. (2000). Philippine rice research institute (Vol. 3119, pp. 105-120). Nueva Ecija, Philippines: Science City of Muňoz.

Pathak, H., & Patel, M. (1988). Sensitivity of upland rice genotypes to gamma radiation. International Rice Research Newsletter (Philippines), 13(5), 6-10.

Plant Variety Protection Test Guidelines for Rice. (2016). Bureau of plant industry. Queon City, Phillippines, 1008: Department of Agriculture.

Rabie, K., Shenata, S., & Bondok, M. (1996). Hormone imbalance, germination, growth and pod shedding of Faba beans as affected by gamma irradiation. Annals of Agricultural Sciences, 41(2), 551 - 556.

Sasikala, R., & Kalaiyarasi, R. (2010). Sensitivity of rice varieties to gamma irradiation. Electronic Journal of Plant Breeding, 1(4), 845-889.

Stoeva, N., & Bineva, Z. (2001). Physiological reponse of beans (Phaseolus vulgaris L.) to gamma-radiation contamination, I. Growth, photosynthesis rate and contents of plastid pigments. Journal of Environmental Protection and Ecology, 6(2), 299-303.

Suprasanna, P., Mirajkar, S. J., & Bhagwat, S. G. (2015). Induced mutations and crop improvement. In Plant biology and biotechnology (pp. 593-617). New Delhi: Springer.

Ulukapi, K., & Nasircilar, A. G. (2018). Chapter 4. Induced mutation: Creating genetic diversity in plants Genetic Diversity in Plant Species-Characterization and Conservation. In Genetic Diversity in Plant Species-Characterization and Conservation, IntechOpen.

Ulukapi., K., & Narsilcilar, A. G. (2015). Development of gamma ray application on mutation breeding studies in recent years. Paper presented at the International Conference on Advances in Agricultural, Biological, and Environmental Sciences, London, United Kingdom.

Yi, G., Choi, J.-H., Jeong, E.-I., Chon, N.-S., Jena, K. K., Ku, Y.-C., & Nam, M.-H. (2005). Morphological and molecular characterization of a new frizzy panicle mutant,“fzp-9 (t)”, in rice (Oryza sativa L.). Hereditas, 142, 92-97.Available at:

No any video found for this article.
Christopher C. Cabusora , Nenita V. Desamero , Teresita H. Borromeo , Rj D. Buluran , Jose E. Hernandez , Pompe C. Sta. Cruz (2021). Characterization of a Novel Floral Mutation Induced by Gamma Irradiation of Philippine Rice Variety NSIC Rc9 (Apo). International Journal of Sustainable Agricultural Research, 8(1): 43-55. DOI: 10.18488/journal.70.2021.81.43.55
Seed mutation by gamma irradiation of 250 Gy 60Co of the Philippine rice variety NSIC Rc9 (Apo) in 2009 DS generated 390 M2 plants, from which one line exhibited a floral mutation different from those previously reported. The mutant was then designated as PR40858-SM2009DS 929-1. Floral development observation resulted in the determination of the crop stage at 76 days after seeding (DAS) in which the floral mutation started to manifest. Comparative agro-morphological characterization of the mutant in 2012 WS showed that it is variable in seven (7) traits, including floral characteristics such as, panicle axis, type and secondary branching, lemma and palea color, and seed coat pubescence. Reduction in grain yield and yield component traits was observed in the mutant line. Detailed characterization of the young panicle showed abnormalities involving the elongation of the rachis, the secondary branches, spikelet and reproductive organs. Mutations in spikelet includes reduction in size and shape, which was translated to the changes in matured grain dimensions. The mutation also affected the viability of the pollen grains resulting to higher spikelet sterility in comparison to the wildtype. The mutant were also variable in nine (9) agronomic traits, including flowering days, plant height, panicle length, tiller production, culm diameter, leaf length and width at maximum tillering, and flag leaf length and width. The characterization of the mutant line revealed other abnormalities aside from the mutation observed in its inflorescence structure making it significantly variable from the wildtype and from the other floral mutations reported in rice.
Contribution/ Originality
The paper contributes to the initial characterization of a novel floral mutant generated from gamma irradiation of the Philippine rice variety NSIC Rc9 (Apo), which is different from the previously reported floral mutations in rice. This paper presents the traits of the mutant plant, specifically the mutation in the floral structures.

The Effect of Farmers Social Networks on Sustainable Agricultural Practices Adoption: A Scoping Review Protocol

Pages: 56-60
Find References

Finding References

The Effect of Farmers Social Networks on Sustainable Agricultural Practices Adoption: A Scoping Review Protocol

Search :
Google Scholor
Search :
Microsoft Academic Search

DOI: 10.18488/journal.70.2021.81.56.60

Pierrette Tiefigue Coulibaly , Jianguo Du , Francis Tang Dabuo , Guy Harold Akouatcha

Export to    BibTeX   |   EndNote   |   RIS

No any video found for this article.
Pierrette Tiefigue Coulibaly , Jianguo Du , Francis Tang Dabuo , Guy Harold Akouatcha (2021). The Effect of Farmers Social Networks on Sustainable Agricultural Practices Adoption: A Scoping Review Protocol. International Journal of Sustainable Agricultural Research, 8(1): 56-60. DOI: 10.18488/journal.70.2021.81.56.60
Agriculture as practiced for decades had a considerable negative impact on the environment. To fulfill the needs of the growing population, the yield had been increased by the use of more land, fertilizer, and pesticides. The consequences were the destruction of the forest, the loss of biodiversity, irrigation problems, the pollution, and so on. To remedy this, a new form of agriculture has emerged: sustainable agriculture. The goal is “to meet society’s food and textile needs in the present without compromising the ability of future generations to meet their own needs”. Adoption of adequate agricultural practices is the best way to implement sustainable agriculture. Many factors have been found to affect farmers in their decision to effectively adopt sustainable agricultural practices. External factors, such as farmers’ social networks, have increasingly captured the interest of researchers. In this paper, we will be presenting a scoping review protocol under the structure recommended by Arksey and O’Malley (2005) by answering the following questions: 1-What do we currently know about the influence of farmers’ social networks in their decision to adopt sustainable agricultural practices? 2-What are the theories/methods used by researchers to study this effect? 3- What are the major knowledge gaps? We used five electronic databases to conduct this scoping review: Web of Science, Sciences Direct, Wiley Online Library, SpringerLink, and EBSCO host.
Contribution/ Originality
To the best of our knowledge, this scoping review protocol is the first to focus only on the influence of farmers' social networks in their adoption of sustainable agricultural practices. The evidence produced from the review will therefore be important in driving future research on the topic.

Boosting Farm Productivity through Intensification of Soybean Production Technology

Pages: 61-70
Find References

Finding References

Boosting Farm Productivity through Intensification of Soybean Production Technology

Search :
Google Scholor
Search :
Microsoft Academic Search

DOI: 10.18488/journal.70.2021.81.61.70

Godfrey C. Onuwa , Sunday S. Mailumo , Adeshola Olatunde Adepoju

Export to    BibTeX   |   EndNote   |   RIS

No any video found for this article.
Godfrey C. Onuwa , Sunday S. Mailumo , Adeshola Olatunde Adepoju (2021). Boosting Farm Productivity through Intensification of Soybean Production Technology. International Journal of Sustainable Agricultural Research, 8(1): 61-70. DOI: 10.18488/journal.70.2021.81.61.70
This study aims to critically bring to the fore appropriate soybean production technologies that boost the level of farm productivity. Multistage sampling techniques were used in selecting respondents for this study. Primary data was collected using structured questionnaires. Descriptive statistics and Multinomial Logit regression model were the analytical techniques employed. The results indicated that most (35%) were within the age bracket of 21-30 years; 39.7% had farming experience of 1-5 years. Most (73.3%) had extension contact; most (75%) were married, and most (63.3%) were male. Furthermore, most (55%) had farm size of ?1.9 hectares; most (38.3%) had household size of 11-30 people. Also, planting on ridges (80%), use of viable seeds (79.2%) and recommended harvesting time (50.0%); were the prevalent soybean production technologies adopted in the study area. In addition, the coefficient of multiple determinations (R2) was 0.7831 suggesting that 78% of the variation in the soybean farmer’s adoption decision was accounted for by the variables in the regression model. The remaining 22% is attributable to omitted variables and the stochastic error term. Furthermore, the most significant constraints of adoption of soybean production technologies were; high cost of technology (68.3%), lack of technical expertise (50.8%), inadequate capital (40.8%), and poor market linkages (40.0%). Thus, this study revealed that socioeconomic variables affected farmer’s adoption decisions. Moreover, technology adoption was relatively low with consequent declining farm productivity. However, improved extension service, subsidized and improved access and/ or supply of inputs, credit and market linkages are strongly recommended.
Contribution/ Originality
This study is one of the few studies which have investigated appropriate soybean production technologies that boost farm productivity.