Current Research in Agricultural Sciences
June 2020, Volume 7, 1, pp 15-22
Blaney-Criddle, Hargreaves, Humid subtropical, ETo, Islamabad, Kakul, Pakistan.
[1] N. D. Mueller, J. S. Gerber, M. Johnston, D. K. Ray, N. Ramankutty, and J. A. Foley, "Closing yield gaps through nutrient and water management," Nature, vol. 490, pp. 254-257, 2013. Available at: https://doi.org/10.1038/nature11907.
[2] L. Feng, T. Li, and W. Yu, "Cause of severe droughts in Southwest China during 1951–2010," Climate Dynamics, vol. 43, pp. 2033-2042, 2014. Available at: https://doi.org/10.1007/s00382-013-2026-z.
[3] P. Martí, P. González-Altozano, R. López-Urrea, L. A. Mancha, and J. Shiri, "Modeling reference evapotranspiration with calculated targets. Assessment and implications," Agricultural Water Management, vol. 149, pp. 81-90, 2015. Available at: https://doi.org/10.1016/j.agwat.2014.10.028.
[4] M. Hafeez and A. A. Khan, "Assessment of Hargreaves and Blaney-Criddle methods to estimate reference evapotranspiration under coastal conditions," American Journal of Science, Engineering and Technology, vol. 3, pp. 65-72, 2018.
[5] Z. A. Chatha, M. Arshad, A. Bakhah, and A. Shakoor, "Statistical analysis for lining the watercourses," Journal of Agricultural Research, vol. 53, pp. 109-118, 2015.
[6] Q. Javed, M. Arshad, A. Bakhsh, A. Shakoor, Z. A. Chatha, and I. Ahmad, "Redesigning of drip irrigation system using locally manufactured material to control pipe losses for Orchard," Land and Water, vol. 13, pp. 1-4, 2014.
[7] R. Awal, H. Habibi, A. Fares, and S. Deb, "Estimating reference crop evapotranspiration under limited climate data in West Texas," Journal of Hydrology: Regional Studies, vol. 28, p. 100677, 2020. Available at: https://doi.org/10.1016/j.ejrh.2020.100677.
[8] R. G. Allen, L. S. Pereira, D. Raes, and M. Smith, "Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56," Fao, Rome, vol. 300, p. D05109, 1998.
[9] I. A. Walter, R. G. Allen, R. Elliott, M. Jensen, D. Itenfisu, B. Mecham, T. Howell, R. Snyder, P. Brown, and S. Echings, "ASCE's standardized reference evapotranspiration equation," ed: Watershed Management and Operations Management, 2000, pp. 1-11.
[10] D. J. Howes, P. Fox, and P. H. Hutton, "Evapotranspiration from natural vegetation in the Central Valley of California: Monthly grass reference-based vegetation coefficients and the dual crop coefficient approach," Journal of Hydrologic Engineering, vol. 20, p. 04015004, 2015. Available at: https://doi.org/10.1061/(asce)he.1943-5584.0001162.
[11] B. C. Gurski, D. Jerszurki, and J. L. M. d. Souza, "Alternative reference evapotranspiration methods for the main climate types of the state of Paraná, Brazil," Brazilian Agricultural Research, vol. 53, pp. 1003-1010, 2018. Available at: https://doi.org/10.1590/s0100-204x2018000900003.
[12] U. Akumaga, A. Tarhule, and A. A. Yusuf, "Validation and testing of the FAO AquaCrop model under different levels of nitrogen fertilizer on rainfed maize in Nigeria, West Africa," Agricultural and Forest Meteorology, vol. 232, pp. 225-234, 2017. Available at: https://doi.org/10.1016/j.agrformet.2016.08.011.
[13] C. De Fraiture and D. Wichelns, "Satisfying future water demands for agriculture," Agricultural Water Management, vol. 97, pp. 502-511, 2010. Available at: https://doi.org/10.1016/j.agwat.2009.08.008.
[14] M. Gundalia and M. Dholakia, "Modelling daily reference evapotranspiration in middle South Saurashtra Region of India for Monsoon season using dominant meteorological variables and the FAO-56 Penman-Monteith method," International Journal of Sustainable Water and Environmental Systems, vol. 8, pp. 101-108, 2016.
[15] B. Hanson, S. Orloff, and D. Peters, "Monitoring soil moisture helps refine irrigation management," California Agriculture, vol. 54, pp. 38-42, 2000. Available at: https://doi.org/10.3733/ca.v054n03p38.
[16] A. Majeed, S. Mehmood, K. Sarwar, G. Nabi, and M. A. Kharal, "Assessment of reference evapotranspiration by the hargreaves Method in Southern Punjab Pakistan," European Journal of Advances in Engineering and Technology, vol. 4, pp. 64-70, 2017.
[17] G. Naadimuthu, K. Raju, and E. Lee, "A heuristic dynamic optimization algorithm for irrigation scheduling," Mathematical and Computer Modelling, vol. 30, pp. 169-183, 1999. Available at: https://doi.org/10.1016/s0895-7177(99)00172-7.
[18] H. Blaney and W. Criddle, "Determining water requirements in irrigated areas from climatological and irrigation data," 3, pp. 8-9, 1950.
[19] C. H. B. Priestley and R. Taylor, "On the assessment of surface heat flux and evaporation using large-scale parameters," Monthly Weather Review, vol. 100, pp. 81-92, 1972. Available at: https://doi.org/10.1175/1520-0493(1972)100<0081:otaosh>2.3.co;2.
[20] G. H. Hargreaves and Z. A. Samani, "Reference crop evapotranspiration from temperature," Applied Engineering in Agriculture, vol. 1, pp. 96-99, 1985. Available at: https://doi.org/10.13031/2013.26773.
[21] P. Gavilán, I. Lorite, S. Tornero, and J. Berengena, "Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment," Agricultural Water Management, vol. 81, pp. 257-281, 2006. Available at: https://doi.org/10.1016/j.agwat.2005.05.001.
[22] R. Lopez-Urrea, F. M. De Santa Olalla, C. Fabeiro, and A. Moratalla, "An evaluation of two hourly reference evapotranspiration equations for semiarid conditions," Agricultural Water Management, vol. 86, pp. 277-282, 2006. Available at: https://doi.org/10.1016/j.agwat.2006.05.017.
[23] D. Althoff, R. A. D. Santos, H. C. Bazame, F. F. D. Cunha, and R. Filgueiras, "Improvement of hargreaves–samani reference evapotranspiration estimates with local calibration," Water, vol. 11, p. 2272, 2019. Available at: https://doi.org/10.3390/w11112272.
[24] A. Malik, A. Kumar, M. A. Ghorbani, M. H. Kashani, O. Kisi, and S. Kim, "The viability of co-active fuzzy inference system model for monthly reference evapotranspiration estimation: Case study of Uttarakhand State," Hydrology Research, vol. 50, pp. 1623-1644, 2019. Available at: https://doi.org/10.2166/nh.2019.059.
[25] G. H. Hargreaves and R. G. Allen, "History and evaluation of Hargreaves evapotranspiration equation," Journal of Irrigation and Drainage Engineering, vol. 129, pp. 53-63, 2003. Available at: https://doi.org/10.1061/(asce)0733-9437(2003)129:1(53.
[26] P. Droogers and R. G. Allen, "Estimating reference evapotranspiration under inaccurate data conditions," Irrigation and Drainage Systems, vol. 16, pp. 33-45, 2002.
[27] J. P. Rojas and R. E. Sheffield, "Evaluation of daily reference evapotranspiration methods as compared with the ASCE-EWRI Penman-Monteith equation using limited weather data in Northeast Louisiana," Journal of Irrigation and Drainage Engineering, vol. 139, pp. 285-292, 2013. Available at: https://doi.org/10.1061/(asce)ir.1943-4774.0000523.
[28] B. Ashraf, R. Yazdani, M. Mousavi-Baygi, and M. Bannayan, "Investigation of temporal and spatial climate variability and aridity of Iran," Theoretical and Applied Climatology, vol. 118, pp. 35-46, 2014. Available at: https://doi.org/10.1007/s00704-013-1040-8.
[29] H. Tabari, M. E. Grismer, and S. Trajkovic, "Comparative analysis of 31 reference evapotranspiration methods under humid conditions," Irrigation Science, vol. 31, pp. 107-117, 2013. Available at: https://doi.org/10.1007/s00271-011-0295-z.
[30] Y. Dinpashoh, "Study of reference crop evapotranspiration in IR of Iran," Agricultural Water Management, vol. 84, pp. 123-129, 2006. Available at: https://doi.org/10.1016/j.agwat.2006.02.011.
[31] H. Afzaal, A. A. Farooque, F. Abbas, B. Acharya, and T. Esau, "Computation of evapotranspiration with artificial intelligence for precision water resource management," Applied Sciences, vol. 10, pp. 1-16, 2020. Available at: https://doi.org/10.3390/app10051621.
[32] S. Trajkovic, M. Gocic, R. Pongracz, J. Bartholy, and M. Milanovic, "Assessment of reference evapotranspiration by regionally calibrated temperature-based equations," KSCE Journal of Civil Engineering, vol. 24, pp. 1020-1027, 2020. Available at: https://doi.org/10.1007/s12205-020-1698-2.