Contact Us

For Marketing, Sales and Subscriptions Inquiries
2637 E Atlantic Blvd #43110
Pompano Beach, FL 33062
USA

Conference List

International Journal of Business, Economics and Management

September 2014, Volume 1, 9, pp 264-271

S-Dimensional Assets Portfolio Evaluation

Luis F. Copertari

Luis F. Copertari 1

  1. Edificio de Ingeniería en Computación y de Software, Segundo Piso, Carretera a Guadalajara, Zacatecas, Mexico 1

on Google Scholar
on PubMed

Abstract:

An approach to calculate the upper limit to any given portfolio with s assets (corporate stocks or government bonds) in it is provided, which does not require the relative weight of each asset in the portfolio. The value obtained is contrasted with the traditional weighting approach to calculate the portfolio’s value. The process followed is the scientific method, starting with observation and hypothesis and after analyzing two examples, a synthesis is performed by generalizing the concepts and the main thesis that the Pythagorean approach here proposed constitutes an upper limit for the portfolio’s value.


Contribution/ Originality
This study uses a new estimation methodology to calculate the upper limit value of a portfolio of assets without the need to incorporate the weight of each asset. If there are no weights assigned to each asset, this upper limit may be the only way to calculate the portfolio’s value.

Keywords:


Reference:

  1. Amari, S., 2001. Information geometry on hierarchy of probability distributions. IEEE Transactions on Information Theory, 47(5): 1701-1711.
  2. Bychuk, O.V. and B.J. Haughey, 2011. Hedging market exposures: Identifying and managing market risks. Hoboken, NJ: John Wiley & Sons.
  3. Cartwright, E., 2011. Behavioral economics. New York: Routledge.
  4. Fontanills, G.A. and T. Gentile, 2001. The stock market course. New York: John Wiley & Sons.
  5. Gigerenzer, G., 2008. Why heuristics work. Perspectives on Psychological Science, 3(1): 20-29.
  6. Gilovich, T., D. Griffin and D. Kahnemann, 2002. Heuristics and biases: The psychology of intuitive judgment. New York: Cambridge University Press.
  7. Handelsman, J., D. Ebert-May, R. Beichner, P. Bruns, A. Chang, R. DeHann, J. Gentile, S. Lauffer, J. Stewart, S.L. Tilghman and W.B. Wood, 2004. Scientific teaching. Science, 304(5670): 521-522.
  8. Kelly, J., 2013. The neatest little guide to stock market investing. New York: Penguin Books.
  9. Lubatkin, M. and S. Chatterjee, 1994. Extending modern portfolio theory into the domain of corporate diversification: Does it apply? Academy of Management Journal, 37(1): 109-136.
  10. Maginn, J.L., D.L. Tuttle, J.E. Pinto and D.W. McLeavey, 2007. Managing investment portfolios: A dynamic process. Hoboken, NJ: John Wiley & Sons.
  11. Project Management Institute (PMI), 2013. The standard for portfolio management. Newtown Square, Pennsylvania: PMI.
  12. Ritter, J.R., 2003. Behavioral finance. Pacific-Basin Finance Journal, 11(4): 429-437.
  13. Sagan, C., 1996. The demon-haunted world: Science as a candle in the dark. New York: Random House.
  14. Scott, J.T., 1993. Purposive diversification and economic performance. New York: Cambridge University Press.
  15. Shefrin, H. and M. Statman, 2000. Behavioral portfolio theory. Journal of Financial and Quantitative Analysis, 35(2): 127-151.
  16. Tversky, A. and D. Kahneman, 1974. Judgment under uncertainty: Heuristics and biases. Science, 185(4157): 1124-1131.
  17. Zacks, L., 2011. The handbook of equity market anomalies: Translating market inefficiencies into effective investment strategies. Hoboken, NJ: John Wiley & Sons.

Statistics:

Google Scholor ideas Microsoft Academic Search bing Google Scholor

Funding:

Competing Interests:

Acknowledgement:


Related Article