International Journal of Veterinary Sciences Research
June 2019, Volume 5, 2, pp 48-57
Intramammary infection, Subclinical mastitis, Infertility, Pregnancy rate, Embryonic losses, Abortion.
[1] N. Sharma, A. S. Batoo, Z. I. Huma, S. Kour, J. Misri, and K. Hussain, "Impact of mastitis on reproductive performance in dairy animals: A review," Theriogenology Insight, vol. 7, pp. 41-49, 2017.Available at: https://doi.org/10.5958/2277-3371.2017.00015.8.
[2] S. Walsh, E. Williams, and A. Evans, "A review of the causes of poor fertility in high milk producing dairy cows," Animal Reproduction Science, vol. 123, pp. 127-138, 2011.Available at: https://doi.org/10.1016/j.anireprosci.2010.12.001.
[3] M. M. Mohsen, A. O. Hendawy, and M. M. Zeitoun, "Effect of mastitis on luteal function and pregnancy rates in buffaloes," Theriogenology, vol. 86, pp. 1189-1194, 2016.Available at: https://doi.org/10.1016/j.theriogenology.2016.04.009.
[4] J. Hertl, Y. Gröhn, J. Leach, D. Bar, G. Bennett, R. Gonzalez, B. Rauch, F. Welcome, L. Tauer, and Y. Schukken, "Effects of clinical mastitis caused by gram-positive and gram-negative bacteria and other organisms on the probability of conception in New York State Holstein dairy cows," Journal of Dairy Science, vol. 93, pp. 1551-1560, 2010.Available at: https://doi.org/10.3168/jds.2009-2599.
[5] K. Singh, M. Chandra, G. Kaur, D. Narang, and D. K. Gupta, "Prevalence and antibiotic resistance pattern among the mastitis causing microorganisms," Open Journal of Veterinary Medicine, vol. 8, pp. 54-64, 2018.Available at: https://doi.org/10.4236/ojvm.2018.84007.
[6] J. Xu, X. Tan, X. Zhang, X. Xia, and H. Sun, "The diversities of staphylococcal species, virulence and antibiotic resistance genes in the subclinical mastitis milk from a single Chinese cow herd," Microbial pathogenesis, vol. 88, pp. 29-38, 2015.Available at: https://doi.org/10.1016/j.micpath.2015.08.004.
[7] C. Boireau, G. Cazeau, N. Jarrige, D. Calavas, J.-Y. Madec, A. Leblond, M. Haenni, and É. Gay, "Antimicrobial resistance in bacteria isolated from mastitis in dairy cattle in France, 2006–2016," Journal of Dairy Science, vol. 101, pp. 9451-9462, 2018.Available at: https://doi.org/10.3168/jds.2018-14835.
[8] Y. Zhao, H. Liu, X. Zhao, Y. Gao, M. Zhang, and D. Chen, "Prevalence and pathogens of subclinical mastitis in dairy goats in China," Tropical Animal Health and Production, vol. 47, pp. 429-435, 2015.Available at: https://doi.org/10.1007/s11250-014-0742-y.
[9] P. Vishwakarma, S. Roy, M. Roy, and M. Sharma, "Prevalence and control of bubaline mastitis in Chhattisgarh State in India," Pakistan Journal of Zoology. Supplementary Series, vol. 9, pp. 281-287, 2009.
[10] N. Villa-Arcila, J. Sanchez, M. Ratto, J. Rodriguez-Lecompte, P. Duque-Madrid, S. Sanchez-Arias, and A. Ceballos-Marquez, "The association between subclinical mastitis around calving and reproductive performance in grazing dairy cows," Animal Reproduction Science, vol. 185, pp. 109-117, 2017.Available at: https://doi.org/10.1016/j.anireprosci.2017.08.010.
[11] H. Hiitiö, J. Vakkamäki, H. Simojoki, T. Autio, J. Junnila, S. Pelkonen, and S. Pyörälä, "Prevalence of subclinical mastitis in finnish dairy cows: Changes during recent decades and impact of cow and herd factors," Acta Veterinaria Scandinavica, vol. 59, pp. 1-14, 2017.Available at: https://doi.org/10.1186/s13028-017-0288-x.
[12] A. Albaaj, G. Foucras, and D. Raboisson, "High somatic cell counts and changes in milk fat and protein contents around insemination are negatively associated with conception in dairy cows," Theriogenology, vol. 88, pp. 18-27, 2017.Available at: https://doi.org/10.1016/j.theriogenology.2016.09.043.
[13] M. Fuenzalida, P. Fricke, and P. Ruegg, "The association between occurrence and severity of subclinical and clinical mastitis on pregnancies per artificial insemination at first service of Holstein cows," Journal of Dairy Science, vol. 98, pp. 1–15, 2015.
[14] T. Halasa, K. Huijps, O. Østerås, and H. Hogeveen, "Economic effects of bovine mastitis and mastitis management: A review," Veterinary Quarterly, vol. 29, pp. 18-31, 2007.Available at: https://doi.org/10.1080/01652176.2007.9695224.
[15] M. Gussmann, W. Steeneveld, and C. Kirkeby, "Economic and epidemiological impact of dif erent intervention strategies for subclinical and clinical mastitis," Preventive Veterinary Medicine, vol. 166, pp. 78–85, 2019.
[16] Ş. Ö. Gülzari, B. V. Ahmadi, and A. W. Stott, "Impact of subclinical mastitis on greenhouse gas emissions intensity and profitability of dairy cows in Norway," Preventive Veterinary Medicine, vol. 150, pp. 19-29, 2018.Available at: https://doi.org/10.1016/j.prevetmed.2017.11.021.
[17] A. Ahmadzadeh, F. Frago, B. Shafii, J. Dalton, W. Price, and M. McGuire, "Effect of clinical mastitis and other diseases on reproductive performance of Holstein cows," Animal Reproduction Science, vol. 112, pp. 273-282, 2009.Available at: https://doi.org/10.1016/j.anireprosci.2008.04.024.
[18] H. Nava-Trujillo, E. Soto-Belloso, and A. E. Hoet, "Effects of clinical mastitis from calving to first service on reproductive performance in dual-purpose cows," Animal Reproduction Science, vol. 121, pp. 12-16, 2010.Available at: https://doi.org/10.1016/j.anireprosci.2010.05.014.
[19] J. C. Rodgers, S. Bird, J. Larson, N. DiLorenzo, C. Dahlen, A. DiCostanzo, and G. Lamb, "An economic evaluation of estrous synchronization and timed artificial insemination in suckled beef cows," Journal of Animal Science, vol. 90, pp. 4055-4062, 2012.Available at: https://doi.org/10.2527/jas.2011-4836.
[20] J. L. Gonçalves, T. Tomazi, J. R. Barreiro, D. C. Beuron, M. A. Arcari, S. H. I. Lee, C. M. d. M. R. Martins, J. P. A. Junior, and M. V. dos Santos, "Effects of bovine subclinical mastitis caused by Corynebacterium spp. on somatic cell count, milk yield and composition by comparing contralateral quarters," The Veterinary Journal, vol. 209, pp. 87-92, 2016.Available at: https://doi.org/10.1016/j.tvjl.2015.08.009.
[21] J. Fujii, Y. Iuchi, and F. Okada, "Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system," Reprod Biol Endocrinol, vol. 3, pp. 1–10, 2005.
[22] G. Valacchi, F. Virgili, C. Cervellati, and A. Pecorelli, "OxInflammation: from subclinical condition to pathological biomarker," Frontiers in Physiology, vol. 9, pp. 1-14, 2018.Available at: https://doi.org/10.3389/fphys.2018.00858.
[23] A. T. Perkins, T. M. Das, L. C. Panzera, and S. E. Bickel, "Oxidative stress in oocytes during midprophase induces premature loss of cohesion and chromosome segregation errors," Proceedings of the National Academy of Sciences, vol. 113, pp. E6823-E6830, 2016.Available at: https://doi.org/10.1073/pnas.1612047113.
[24] M. G. Da Broi, A. A. Jordão‐Jr, R. A. Ferriani, and P. A. Navarro, "Oocyte oxidative DNA damage may be involved in minimal/mild endometriosis-related infertility," Molecular Reproduction and Development, vol. 85, pp. 128-136, 2018.Available at: https://doi.org/10.1002/mrd.22943.
[25] J. Avila, R. González-Fernández, D. Rotoli, J. Hernández, and A. Palumbo, "Oxidative stress in granulosa-lutein cells from in vitro fertilization patients," Reproductive Sciences, vol. 23, pp. 1656-1661, 2016.Available at: https://doi.org/10.1177/1933719116674077.
[26] R. O. Gilbert, "Symposium review: Mechanisms of disruption of fertility by infectious diseases of the reproductive tract," Journal of Dairy Science, vol. 102, pp. 3754-3765, 2019.Available at: https://doi.org/10.3168/jds.2018-15602.
[27] J. J. Bromfield and I. M. Sheldon, "Lipopolysaccharide reduces the primordial follicle pool in the bovine ovarian cortex ex vivo and in the murine ovary in vivo," Biology of Reproduction, vol. 88, pp. 98, 1-9, 2013.Available at: https://doi.org/10.1095/biolreprod.112.106914.
[28] J. Ireland, D. Scheetz, F. Jimenez-Krassel, A. Themmen, F. Ward, P. Lonergan, G. Smith, G. Perez, A. Evans, and J. Ireland, "Antral follicle count reliably predicts number of morphologically healthy oocytes and follicles in ovaries of young adult cattle," Biology of Reproduction, vol. 79, pp. 1219-1225, 2008.Available at: https://doi.org/10.1095/biolreprod.108.071670.
[29] J. Ireland, A. Zielak-Steciwko, F. Jimenez-Krassel, J. Folger, A. Bettegowda, D. Scheetz, S. Walsh, F. Mossa, P. Knight, and G. Smith, "Variation in the ovarian reserve is linked to alterations in intrafollicular estradiol production and ovarian biomarkers of follicular differentiation and oocyte quality in cattle," Biology of Reproduction, vol. 80, pp. 954-964, 2009.Available at: https://doi.org/10.1095/biolreprod.108.073791.
[30] J. Ireland, G. Smith, D. Scheetz, F. Jimenez-Krassel, J. Folger, J. Ireland, F. Mossa, P. Lonergan, and A. Evans, "Does size matter in females? An overview of the impact of the high variation in the ovarian reserve on ovarian function and fertility, utility of anti-Müllerian hormone as a diagnostic marker for fertility and causes of variation in the ovarian reserve in cattle," Reproduction, Fertility and Development, vol. 23, pp. 1-14, 2010.Available at: https://doi.org/10.1071/rd10226.
[31] S. Herath, E. J. Williams, S. T. Lilly, R. O. Gilbert, H. Dobson, C. E. Bryant, and I. M. Sheldon, "Ovarian follicular cells have innate immune capabilities that modulate their endocrine function," Reproduction, vol. 134, pp. 683-693, 2007.
[32] F. Magata and T. Shimizu, "Effect of lipopolysaccharide on developmental competence of oocytes," Reproductive Toxicology, vol. 71, pp. 1-7, 2017.Available at: https://doi.org/10.1016/j.reprotox.2017.04.001.
[33] F. Magata, M. Horiuchi, and A. Miyamoto, "Lipopolysaccharide (LPS) inhibits steroid production in theca cells of bovine follicles In vitro: Distinct effect of LPS on theca cell function in pre- and post-selection follicles," Journal of Reproduction and Development, vol. 60, pp. 280–287, 2014.Available at: https://doi.org/10.1262/jrd.2013-124.
[34] Y. Lavon, G. Leitner, U. Moallem, E. Klipper, H. Voet, S. Jacoby, G. Glick, R. Meidan, and D. Wolfenson, "Immediate and carryover effects of Gram-negative and Gram-positive toxin-induced mastitis on follicular function in dairy cows," Theriogenology, vol. 76, pp. 942-953, 2011.Available at: https://doi.org/10.1016/j.theriogenology.2011.05.001.
[35] E. Ribeiro, G. Gomes, L. Greco, R. Cerri, A. Vieira-Neto, P. Monteiro Jr, F. Lima, R. Bisinotto, W. Thatcher, and J. Santos, "Carryover effect of postpartum inflammatory diseases on developmental biology and fertility in lactating dairy cows," Journal of Dairy Science, vol. 99, pp. 2201-2220, 2016.Available at: https://doi.org/10.3168/jds.2015-10337.
[36] J. Santos, H. M. Rutigliano, and M. Sá Filho, "Risk factors for resumption of postpartum estrous cycles and embryonic survival in lactating dairy cows," Animal Reproduction Science, vol. 110, pp. 207-221, 2009.Available at: https://doi.org/10.1016/j.anireprosci.2008.01.014.
[37] E. Ribeiro, K. Galvão, W. Thatcher, and J. Santos, "Economic aspects of applying reproductive technologies to dairy herds," Anim Reprod, vol. 9, pp. 370-387, 2012.
[38] G. Santos, M. Bottino, A. Santos, L. Simões, J. Souza, M. Ferreira, J. da Silveira, A. Ávila, A. Bride, and J. Sales, "Subclinical mastitis interferes with ovulation, oocyte and granulosa cell quality in dairy cows," Theriogenology, vol. 119, pp. 214-219, 2018.Available at: https://doi.org/10.1016/j.theriogenology.2018.04.028.
[39] Y. Lavon, G. Leitner, T. Goshen, R. Braw-Tal, S. Jacoby, and D. Wolfenson, "Exposure to endotoxin during estrus alters the timing of ovulation and hormonal concentrations in cows," Theriogenology, vol. 70, pp. 956-967, 2008.Available at: https://doi.org/10.1016/j.theriogenology.2008.05.058.
[40] F. Schrick, M. Hockett, A. Saxton, M. Lewis, H. Dowlen, and S. Oliver, "Influence of subclinical mastitis during early lactation on reproductive parameters," Journal of Dairy Science, vol. 84, pp. 1407-1412, 2001.Available at: https://doi.org/10.3168/jds.s0022-0302(01)70172-5.
[41] M. A. Heravi, M. D. Mesgaran, and R. O. Gilbert, "Effect of mastitis during the first lactation on production and reproduction performance of Holstein cows," Tropical Animal Health and Production, vol. 44, pp. 1567-1573, 2012.Available at: https://doi.org/10.1007/s11250-012-0107-3.
[42] E. S. Ribeiro and M. R. Carvalho, "Impact and mechanisms of inflammatory diseases on embryonic development and fertility in cattle," Anim. Reprod, vol. 14, pp. 589-600, 2017.Available at: https://doi.org/10.21451/1984-3143-ar1002.
[43] F. Magata, M. Horiuchi, R. Echizenya, R. Miura, S. Chiba, M. Matsui, A. Miyamoto, Y. Kobayashi, and T. Shimizu, "Lipopolysaccharide in ovarian follicular fluid influences the steroid production in large follicles of dairy cows," Animal Reproduction Science, vol. 144, pp. 6-13, 2014.Available at: https://doi.org/10.1016/j.anireprosci.2013.11.005.
[44] F. Magata, M. Horiuchi, A. Miyamoto, and T. Shimizu, "Peptidoglycan inhibits progesterone and androstenedione production in bovine ovarian theca cells," Toxicology in Vitro, vol. 28, pp. 961-967, 2014.Available at: https://doi.org/10.1016/j.tiv.2014.04.005.
[45] Y. Lavon, G. Leitner, H. Voet, and D. Wolfenson, "Naturally occurring mastitis effects on timing of ovulation, steroid and gonadotrophic hormone concentrations, and follicular and luteal growth in cows," Journal of Dairy Science, vol. 93, pp. 911-921, 2010.Available at: https://doi.org/10.3168/jds.2009-2112.
[46] O. Furman, G. Leitner, Z. Roth, Y. Lavon, S. Jacoby, and D. Wolfenson, "Experimental model of toxin-induced subclinical mastitis and its effect on disruption of follicular function in cows," Theriogenology, vol. 82, pp. 1165-1172, 2014.Available at: https://doi.org/10.1016/j.theriogenology.2014.08.002.
[47] C. Suzuki, K. Yoshioka, S. Iwamura, and H. Hirose, "Endotoxin induces delayed ovulation following endocrine aberration during the proestrous phase in Holstein heifers," Domestic Animal Endocrinology, vol. 20, pp. 267-278, 2001.Available at: https://doi.org/10.1016/s0739-7240(01)00098-4.
[48] K. M. Breen and F. J. Karsch, "Does cortisol inhibit pulsatile luteinizing hormone secretion at the hypothalamic or pituitary level?," Endocrinology, vol. 145, pp. 692-698, 2004.Available at: https://doi.org/10.1210/en.2003-1114.
[49] D. Wolfenson, G. Leitner, and Y. Lavon, "The disruptive effects of mastitis on reproduction and fertility in dairy cows," Italian Journal of Animal Science, vol. 14, pp. 650–654, 2015.
[50] Y. Lavon, G. Leitner, E. Klipper, U. Moallem, R. Meidan, and D. Wolfenson, "Subclinical, chronic intramammary infection lowers steroid concentrations and gene expression in bovine preovulatory follicles," Domestic Animal Endocrinology, vol. 40, pp. 98-109, 2011.Available at: https://doi.org/10.1016/j.domaniend.2010.09.004.
[51] C. D. Hudson, A. J. Bradley, J. E. Breen, and M. J. Green, "Dairy herd mastitis and reproduction: Using simulation to aid interpretation of results from discrete time survival analysis," The Veterinary Journal, vol. 204, pp. 47-53, 2015.Available at: https://doi.org/10.1016/j.tvjl.2015.01.024.
[52] C. Hudson, A. J. Bradley, J. Breen, and M. J. Green, "Associations between udder health and reproductive performance in United Kingdom dairy cows," Journal of Dairy Science, vol. 95, pp. 3683-3697, 2012.Available at: https://doi.org/10.3168/jds.2011-4629.
[53] M. O. Dahl, F. P. Maunsell, A. De Vries, K. N. Galvao, C. A. Risco, and J. A. Hernandez, "Evidence that mastitis can cause pregnancy loss in dairy cows: A systematic review of observational studies," Journal of Dairy Science, vol. 100, pp. 8322-8329, 2017.Available at: https://doi.org/10.3168/jds.2017-12711.