DOI: 10.18488/journal.108.2020.51.1.16
[1] H. Florence, J. Boé, M. Déqué, A. Ducharne, S. Gascoin, A. Hachour, E. Martin, C. Pagé, E. Sauquet, and L. Terray, "Impact of climate change on the hydrogeology of two basins in northern France," Climatic Change, vol. 121, pp. 771-785, 2013. Available at: https://doi.org/10.1007/s10584-013-0934-x.
[2] Z. W. Felix, G. T. Yengoh, and A. Tom, "Seasonal migration and settlement around Lake Chad: Strategies for control of resources in an increasingly drying Lake," Resources, vol. 6, pp. 1-17, 2017. Available at: https://doi.org/10.3390/resources6030041.
[3] A. Umesh and N. Pouyan, "Impacts of climate change on water resources in Malawi," Journal of Hydrologic Engineering, vol. 21, p. 05016026, 2016.
[4] S. L. Gebre, K. Tadele, and B. G. Mariam, "Potential impacts of climate change on the hydrology and water resources availability of didessa catchment, Blue Nile River Basin, Ethiopia," Journal of Geology and Geosciences, vol. 4, p. 193, 2015.
[5] A.-K. Mohamed, "Water for development and development for water: Realizing the sustainable development goals (SDGs) vision," Aquatic Procedia, vol. 6, pp. 106-110, 2016. Available at: https://doi.org/10.1016/j.aqpro.2016.06.013.
[6] A. Babagana, "The impacts of global climate change in Africa: The Lake Chad, adaptation and vulnerability," 2017.
[7] O. Agumagu and M. Todd, "Modelling the climatic variability in the Niger Delta Region: Influence of climate change on hydrology," Journal of Earth Science & Climatic Change, vol. 6, p. 1, 2015.
[8] J. Babatolu and R. Akinnubi, "Influence of climate change in Niger River Basin development authority area on Niger Runoff, Nigeria," Journal of Earth Science & Climatic Change, vol. 5, pp. 1-8, 2014. Available at: https://doi.org/10.4172/2157-7617.1000230.
[9] S. Ojoye, A. O. Sulyman, and T. I. Yahaya, "Climate change and adaptation strategies to water resources in some parts of Sudano-Sahelian Zone of Nigeria," Ethiopian Journal of Environmental Studies & Management, vol. 9, pp. 326 – 338, 2016. Available at: https://doi.org/10.4314/ejesm.v9i3.7.
[10] D. Yunana, A. Shittu, S. Ayuba, E. Bassah, and W. Joshua, "Climate change and lake water resources in Sub-Saharan Africa: Case study of lake Chad and lake Victoria," Nigerian Journal of Technology, vol. 36, pp. 648-654, 2017. Available at: https://doi.org/10.4314/njt.v36i2.42.
[11] P. S. Esther, E. Kodra, K. Steinhaeuser, and A. R. Ganguly, "Estimating future global per capita water availability based on changes in climate and population," Computers & Geosciences, vol. 42, pp. 79-86, 2012. Available at: https://doi.org/10.1016/j.cageo.2012.01.019.
[12] M. Demircan, H. Gürkan, O. Eskioğlu, H. ARABACI, and M. Coşkun, "Climate change projections for Turkey: Three models and two scenarios," Turkey Journal of Water Science and Management, vol. 1, pp. 22-43, 2017. Available at: https://doi.org/10.31807/tjwsm.297183.
[13] A. AbdulKadir, M. Usman, and A. Shaba, "An integrated approach to delineation of the ecoclimatic zones in Northern Nigeria," Journal of Ecology and the Natural Environment, vol. 7, pp. 247-255, 2015. Available at: https://doi.org/10.5897/jene2015.0532.
[14] T. Chai and R. R. Draxler, "Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature," Geoscientific Model Development, vol. 7, p. 1247 1250, 2014. Available at: https://doi.org/10.5194/gmd-7-1247-2014.
[15] S. Shrestha and A. Y. Htut, "Land use and climate change impacts on the hydrology of the Bago River Basin, Myanmar," Environmental Modeling & Assessment, vol. 21, pp. 819-833, 2016. Available at: 10.1007/s10666-016-9511-9.
[16] N. Khan, S. Shahid, K. Ahmed, T. Ismail, N. Nawaz, and M. Son, "Performance assessment of general circulation model in simulating daily precipitation and temperature using multiple gridded datasets," Water, vol. 10, p. 1793, 2018. Available at: https://doi.org/10.3390/w10121793.
[17] R. Nurmohamed and D. Peter, "The impact of climate change and climate variability on the agricultural sector in Nickerie District," Journal of Agriculture and Environmental Sciences, vol. 6, pp. 51-65, 2017. Available at: https://doi.org/10.15640/jaes.v6n1a6.
[18] J. F. Escarcha, J. A. Lassa, E. P. Palacpac, and K. K. Zander, "Understanding climate change impacts on water buffalo production through farmers’ perceptions," Climate Risk Management, vol. 20, pp. 50-63, 2018. Available at: https://doi.org/10.1016/j.crm.2018.03.003.
[19] C. Fullarton, T. C. Draper, N. Phillips, B. P. de Lacy Costello, and A. Adamatzky, "Belousov–Zhabotinsky reaction in liquid marbles," Journal of Physics: Materials, vol. 2, p. 015005, 2019. Available at: https://doi.org/10.1088/2515-7639/aaed4c.
[20] J. Schewe, J. D. Heinke, I. Gerten, N. W. Haddeland, D. B. Arnell, R. Clark, S. Dankers, B. Eisner, F. J. Fekete, S. N. Colón-González, H. Gosling, X. Kim, Y. Liu, F. T. Masaki, Y. Portmann, T. Satoh, Q. Stacke, Y. Tang, D. Wada, T. Wisser, K. Albrecht, F. Frieler, L. Piontek, Warszawski, and P. Kabat, "Multi-model assessment of water scarcity under climate change," in Proceedings of the National Academy of Sciences of the United States of America (in press), 2013.
[21] A.-K. S. Mohammed, M. F. Price, A. Abahussain, M. Ahmed, and T. O'Higgins, "Vulnerability assessment of environmental and climate change impacts on water resources in Al Jabal Al Akhdar, Sultanate of Oman," Water, vol. 6, pp. 3118-3135, 2014. Available at: https://doi.org/10.3390/w6103118.
[22] R. Singh and R. Kumar, "Vulnerability of water availability in India due to climate change: A bottom-up probabilistic Budyko analysis," Geophysical Research Letters, vol. 42, pp. 9799-9807, 2015. Available at: https://doi.org/10.1002/2015gl066363.
[23] J. P. Lapidez, "Assessment of changes in the water resources budget and hydrological regime of the Pampanga River Basin (Philippines) due to climate change," United Nations Peace and Progress, vol. 3, pp. 15-31, 2016.
[24] M. Ahmed, Y. Tramblay, L. Hanich, D. Ruelland, and L. Jarlan, "Climate change impacts on surface water resources in the Rheraya catchment (High Atlas, Morocco)," Hydrological Sciences Journal, vol. 62, pp. 979-995, 2017. Available at: https://doi.org/10.1080/02626667.2017.1283042.
[25] O. Taikan and R. E. Quiocho, "Economically challenged and water scarce: Identification of global populations most vulnerable to water crises," International Journal of Water Resources Development, vol. 36, pp. 416-428, 2020. Available at: 10.1080/07900627.2019.1698413.
[26] H. B. Mann, "Nonparametric tests against trend," Econometrica: Journal of the Econometric Society, vol. 13, pp. 245-259, 1945. Available at: https://doi.org/10.2307/1907187.
[27] M. G. Kendall, Rank correlation methods. London: Charles Griffin, 1975.
[28] M. S. Pervez and G. M. Henebry, "Assessing the impacts of climate and land use and land cover change on the freshwater availability in the Brahmaputra River basin," Journal of Hydrology: Regional Studies, vol. 3, pp. 285-311, 2015. Available at: https://doi.org/10.1016/j.ejrh.2014.09.003.
[29] A. F. Abdussalam, "Potential future risk of cholera due to climate change in Northern Nigeria," African Research Review, vol. 11, pp. 205-218, 2017. Available at: https://doi.org/10.4314/afrrev.v11i1.15.
[30] A. Nahlah, S. A. Wasimi, and N. Al-Ansari, "Impacts of climate change on water resources of Greater Zab and Lesser Zab Basins, Iraq, using soil and water assessment tool model," International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, vol. 11, pp. 823-829, 2017. Available at: 1307-6892/10007957.
[31] A. S. Michael, G. P. Jewitt, and M. L. Toucher, "Scenario-based impacts of land use and climate changes on the hydrology of a lowland rainforest catchment in Ghana, West Africa," Hydrology and Earth System Sciences Discussions, pp. 1-27, 2017.
[32] T. Vetter, J. Reinhardt, M. Flörke, A. van Griensven, F. Hattermann, S. Huang, H. Koch, I. G. Pechlivanidis, S. Plötner, O. Seidou, B. Su, R. W. Vervoort, and V. Krysanova, "Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins," Climatic Change, vol. 141, pp. 419-433, 2017. Available at: https://doi.org/10.1007/s10584-016-1794-y.
[33] C. S. Vera and L. Díaz, "Anthropogenic influence on summer precipitation trends over South America in CMIP5 models," International Journal of Climatology, vol. 35, pp. 3172-3177, 2015. Available at: https://doi.org/10.1002/joc.4153.
[34] S. Kumar, V. Merwade, J. L. Kinter, and D. Niyogi, "Evaluation of temperature and precipitation trends and long-term persistence in CMIP5 twentieth-century climate simulations," Journal of Climate, vol. 26, pp. 4168–4185, 2013. Available at: https://doi.org/10.1175/JCLI-D-12-00259.1.
[35] A. L. Miguel, O. V. Müller, E. H. Berbery, and G. V. Müller, "Evaluation of CMIP5 retrospective simulations of temperature and precipitation in northeastern Argentina," International Journal of Climatology, vol. 38, pp. e1158-e1175, 2018. Available at: https://doi.org/10.1002/joc.5441.
[36] D. Bozkurt, M. Rojas, J. P. Boisier, and J. s. Valdivieso, "Climate change impacts on hydroclimatic regimes and extremes over Andean basins in central Chile," Hydrology and Earth System Sciences Discussions, pp. 1-29, 2017.
[37] I. Didovets, A. Bronstert, A. Lobanova, V. Krysanova, S. Snizhko, and C. Maule, "Assessment of climate change impacts on water resources in three representative ukrainian catchments using eco-hydrological modelling," Water (Switzerland), vol. 9, pp. 9030204-9030204, 2017.
[38] S. L. Gebre and F. Ludwig, "Hydrological response to climate change of the upper blue Nile River Basin: based on IPCC fifth assessment report (AR5)," Journal of Climatology & Weather Forecasting, vol. 3, pp. 1-15, 2015. Available at: https://doi.org/10.4172/2332-2594.1000121.
[39] J. Pengpeng, D. Zhuang, and Y. Wang, "Impacts of temperature and precipitation on the spatiotemporal distribution of water resources in Chinese mega cities: The case of Beijing," Journal of Water and Climate Change, vol. 8, pp. 593-612, 2017. Available at: https://doi.org/10.2166/wcc.2017.038.
[40] S. E. Gneneyougo, A. B. Yao, Y. M. Kouame, and T. A. G. Bi, "Climate change and its impacts on water resources in the Bandama basin, Côte D’ivoire," Hydrology, vol. 4, pp. 1-13, 2017. Available at: https://doi.org/10.3390/hydrology4010018.
[41] E. D. Coffel, B. Keith, C. Lesk, R. M. Horton, E. Bower, J. Lee, and J. S. Mankin, "Future hot and dry years worsen Nile Basin water scarcity despite projected precipitation increases," Earth's Future, vol. 7, pp. 967-977, 2019. Available at: https://doi.org/10.1029/2019ef001247.
[42] M. Hosea, S. Julich, S. D. Patil, M. A. McDonald, and K.-H. Feger, "Relative contribution of land use change and climate variability on discharge of upper Mara River, Kenya," Journal of Hydrology: Regional Studies, vol. 5, pp. 244-260, 2016. Available at: 10.1016/j.ejrh.2015.12.059.
[43] F. Kara, "Effects of climate change on water resources in Omerli Basin," An Unpublished PhD Thesis of Department of Geodetic and Geographic Information Technology, Submitted to the Graduate School of Natural and Applied Sciences of Middle East Technical University, Turkey, 2014.
[44] L. Guoyong, M. Huang, N. Voisin, X. Zhang, G. R. Asrar, and L. R. Leung, "Emergence of new hydrologic regimes of surface water resources in the conterminous United States under future warming," Environmental Research Letters, vol. 11, p. 114003, 2016. Available at: https://doi.org/10.1088/1748-9326/11/11/114003.
DOI: 10.18488/journal.108.2020.51.17.31
Assefa E. , Tenalem A. , Tilahun A.
[1] Central Statically Agency of Ethiopia, "Demographics, maps and graphs. Retrieved from: https://www.macrotrends.net/cities/20921/addis-abeba/population, " 2020.
[2] AAWSA, "Addis Ababa water and sewerage authority," Quarterly Report2020.
[3] AAWSA, "Addis Ababa water and sewerage authority," Annual Report2010.
[4] AE-HBT, "AGRA-associated engineering," Review of Feasibility Study and Preliminary Design Report, Water Supply Project Stage III. Executive Summary. AAWSA April1993.
[5] AE-HBT, "AGRA-associated HBT Agra joint venture," Hydrogeology of Akaki Wellfield (Area D and D extension). AAWSA1998.
[6] BCEOM–- SEURECA SPACE JV, "Modelling of akaki wellfield," Addis Ababa Water Supply Project Stage III A – Groundwater Phase II. Final Report2000.
[7] BCEOM–- SEURECA SPACE JV, "Akaki wellfiled groundwater model draft rept," Addis Ababa Water Supply Project Stage III A – Groundwater Phase II2002.
[8] Geo-matrix, "Hydrogeological and geophysical study for 50 wells project in Addis Ababa," 2007.
[9] Seureca, "Feasibility study and preliminary design, detailed Report, volume 4 groundwater resource," AAWSA1991.
[10] TAHAL, "Consulting engineers ltd. In association with SHAWEL consult international," Akaki Water Supply Project. Feasibility Study; Volume II; Annexes. AAWSA, May1992.
[11] Water Works Design and Supervision Enterprise, "Adaa-becho groundwater resource evaluation for irrigation," Unpublished Report, Addis Ababa, Ethiopia, 2008.
[12] Water Works Design and Supervision Enterprise, "Hydrological analysis final feasibility Report for Addis Ababa water supply project within 100 km radius," 2017.
[13] Y. Andarge, "Hydrogeological and hydro chemical framework of Upper Awash River Basin," Ethiopia: With Special Emphasis on Inter-basins Groundwater Transfer Between Blue Nile and Awash Rivers, 2009. A PhD Thesis Submitted to University of poitiers, Department of Hydrogeology, 40 Avenue du Recteur Pineau, 86022 Poitiers, France, 2009.
[14] B. Behailu, "Evaluation of the water supply systems of Addis Ababa and its environs using WEAP and MODFLOW coupled with linkKitchen," A PhD Thesis Submitted to The School of Earth Sciences, Addis Ababa University, Ethiopia, 2017.
[15] M. Birhanu, "Hydrogeology of the upper awash upstream of Koka Dam," Ministry of Mines and Enegry, Ethiopian Institute of Geolgical Survey. Note No. 1711982.
[16] A. Tilahun, "Groundwater dynamics in the left bank catchments of the middle Blue Niile and the Upper Awash River basins," Central Ethiopia, A PhD Thesis Submitted to The School of Earth Sciences, Addis Ababa University, Ethiopia, 2015.
[17] G. Berhanu, "The origin of high bicarbonate and fluoride concentrations in waters of the main Ethiopian Rift Valley, East African Rift system," Journal of African Earth Sciences, vol. 22, pp. 391-402, 1996.Available at: https://doi.org/10.1016/0899-5362(96)00029-2.
[18] B. Efrem, "Geology of the Akaki Beseka area," Ministry of Mines, Geological Survey of Ethiopia, Basic Geoscience Mapping Core Process2010.
[19] A. Tsegaye and F. Mazarini, "The yerer-tulu wellel extensional structures: Evidences from remote sensing, petrologic and geochronological data," Central Ethiopia- Institute of Geological Survey, Unpublished Report, Addis Ababa Ethiopia1995.
[20] A. Tsegaye, F. Mazarini, F. Innocenti, and P. Manneti, "The yerer –tulu wellel volcano-tectonic lineament: A transitional structure in central Ethiopia and the associated magmatic activity," Journal of Africa Earth Science, vol. 1, pp. 135-1150, 1997.
[21] A. Tenalem, "Comparison of different base flow separation methods and drought vulnerability in the rift valley," Ethiopia, Journal of Spatial Hydrology, vol. 15, pp. 1-26, 2019.
[22] J. Bredehoeft, "The conceptualization model problem—surprise," Hydrogeology Journal, vol. 13, pp. 37-46, 2005.Available at: https://doi.org/10.1007/s10040-004-0430-5.
[23] M. P. Anderson, W. W. Woessner, and R. J. Hunt, Applied groundwater modelling—simulation of flow and advective transport-second edition. UK, San Diego, USA and Waltham, USA: Academic Press, Imprint of Elsevier, 125 London Wall, 2015.
[24] K. Seifu, Y. Travi, A. Asrat, T. Alemayehu, T. Ayenew, and Z. Tessema, "Groundwater origin and flow along selected transects in Ethiopian rift volcanic aquifers," HydJ, vol. 16, pp. 55-73, 2007.
[25] P. A. Mohr and B. Zanettin, "The ethiopian flood basalt province: In; ‘continental flood basalt, J.D. Macdougall (Ed.)." vol. 63, ed Dordrecht: Kluwer, Acad. Publ, 1988.
[26] A. Tadese, "Geological map of the Akaki area," Geological Survey of Ethiopia, Geoscience Information Center2008.
[27] A. W. Harbaugh, E. R. Banta, M. C. Hill, and M. G. McDonald, "MODFLOW-2000, the U.S. Geological survey modular ground-water model—user guide to modularization concepts and the ground-water flow process: U.S," Geological Survey Open-File Report 00-92, 1212005.
[28] R. Thomas and H. Waterloo, "Aquifer test V.3.5 user’s manual," Advanced Pumping Test and Slug Test Analysis Software2002.
[29] I. Waterloo Hydrogeologic, "Aquifer test V.4.4 user’s manual," Advanced Pumping Test and Slug Test Analysis Software2011.
DOI: 10.18488/journal.108.2020.51.32.45
Nsengiyumva Jean Nepo , Sankaranarayanan Muthiah , Ruzigamanzi Eric , Habineza Eliezel , Mutako Vedasto Alphonsine , Rukangantambara Hamoud
DOI: 10.18488/journal.108.2020.51.46.53
Nsengiyumva Jean Nepo , Sankaranarayanan Muthiah , Ruzigamanzi Eric , Mutako Vedasto Alphonsine , Nyandwi Elias , Rukangantambara Hamoud
[1] R. Ghazavi., A. Vali, and S. Eslamian, "Impact of flood spreading on groundwater level variation and groundwater quality in an arid environment," Water Resources Management, vol. 26, pp. 1651-1663, 2012.Available at: https://doi.org/10.1007/s11269-012-9977-4.
[2] J. J. De Vries and I. Simmers, "Groundwater recharge: An overview of processes and challenges," Hydrogeology Journal, vol. 10, pp. 5-17, 2002.Available at: https://doi.org/10.1007/s10040-001-0171-7.
[3] K. E. Kemper, "Groundwater—from development to management," Hydrogeology Journal, vol. 12, pp. 3-5, 2004.
[4] M. Minville, S. Krau, F. Brissette, and R. Leconte, "Behaviour and performance of a water resource system in Québec (Canada) under adapted operating policies in a climate change context," Water Resources Management, vol. 24, pp. 1333-1352, 2010.Available at: https://doi.org/10.1007/s11269-009-9500-8.
[5] R. Ghazavi, A. Vali, and S. Eslamian, "Impact of flood spreading on infiltration rate and soil properties in an arid environment," Water Resources Management, vol. 24, pp. 2781-2793, 2010.Available at: https://doi.org/10.1007/s11269-010-9579-y.
[6] H. Ebrahimi, R. Ghazavi, and H. Karimi, "Estimation of groundwater recharge from the rainfall and irrigation in an arid environment using inverse modeling approach and RS," Water Resources Management, vol. 30, pp. 1939-1951, 2016.Available at: https://doi.org/10.1007/s11269-016-1261-6.
[7] J. D. D. Nambajimana, X. He, J. Zhou, M. F. Justine, J. Li, D. Khurram, R. Mind’je, and G. Nsabimana, "Land use change impacts on water Erosion in Rwanda," Sustainability, vol. 12, p. 50, 2020.Available at: https://doi.org/10.3390/su12010050.
[8] S. Kebede, Y. Travi, T. Alemayehu, and V. Marc, "Water balance of Lake Tana and its sensitivity to fluctuations in rainfall, Blue Nile basin, Ethiopia," Journal of Hydrology, vol. 316, pp. 233-247, 2006.Available at: https://doi.org/10.1016/j.jhydrol.2005.05.011.
[9] J. Butterworth, D. Macdonald, J. Bromley, L. Simmonds, C. Lovell, and F. Mugabe, "Hydrological processes and water resources management in a dryland environment. III, groundwater recharge and recession in a shallow weathered aquifer," Hydrology and Earth System Sciences, vol. 3, pp. 345-351, 1999.
[10] R. W. Healy and P. G. Cook, "Using groundwater levels to estimate recharge," Hydrogeology Journal, vol. 10, pp. 91-109, 2002.Available at: https://doi.org/10.1007/s10040-001-0178-0.
[11] R. G. Taylor and K. W. Howard, "Groundwater recharge in the Victoria Nile basin of east Africa: Support for the soil moisture balance approach using stable isotope tracers and flow modelling," Journal of Hydrology, vol. 180, pp. 31-53, 1996.Available at: https://doi.org/10.1016/0022-1694(95)02899-4.
[12] Y.-F. Lin. and M. P. Anderson, "A digital procedure for ground water recharge and discharge pattern recognition and rate estimation," Ground Water, vol. 41, pp. 306-315, 2003.Available at: https://doi.org/10.1111/j.1745-6584.2003.tb02599.x.
[13] E. H. Sutanudjaja, L. Van Beek, S. M. De Jong, F. C. van Geer, and M. Bierkens, "Large-scale groundwater modeling using global datasets: A test case for the Rhine-Meuse basin," Hydrology and Earth System Sciences, vol. 15, pp. 2913-2935, 2011.Available at: https://doi.org/10.5194/hess-15-2913-2011.
[14] G. E. Methodology, Report of the groundwater estimation committee vol. 53. New Delhi: Ministry of Irrigation, Government of India, 1984.
[15] G. E. Methodology., Report of the groundwater estimation committee vol. 53. New Delhi: Ministry of Irrigation, Government of India, 1984.
[16] M. Oke, O. Martins, O. Idowu, and O. Aiyelokun, "Comparative analysis of groundwater recharge estimation value obtained using empirical methods in Ogun and Oshun river basins," Ife Journal of Science, vol. 17, pp. 53-63, 2015.