The Asia Journal of Applied Microbiology

Published by: Conscientia Beam
Online ISSN: 2313-8157
Print ISSN: 2409-2177
Quick Submission    Login/Submit/Track

No. 1

Role of Live Microbes for Fermentation and Enhancement of Feeding Value of Wheat Straw as Animal Fodder

Pages: 19-27
Find References

Finding References

Role of Live Microbes for Fermentation and Enhancement of Feeding Value of Wheat Straw as Animal Fodder

Search :
Google Scholor
Search :
Microsoft Academic Search

DOI: 10.18488/journal.33.2021.81.19.27

Misikir Mengistu Feyisa , Praveen Yadav

Export to    BibTeX   |   EndNote   |   RIS

No any video found for this article.
Misikir Mengistu Feyisa , Praveen Yadav (2021). Role of Live Microbes for Fermentation and Enhancement of Feeding Value of Wheat Straw as Animal Fodder. The Asia Journal of Applied Microbiology, 8(1): 19-27. DOI: 10.18488/journal.33.2021.81.19.27
Nowadays, a resource terrible and technologically hungered farmhand within the developing nations of tropical zones faces intense challenges of their livestock farming and products due to tremendously and seriously increments of the human populace in this century. These challenges create this potential to feed human food security and not meet this sector's 2050 human population demand. The farmer faces the challenges of creating better value and sufficient harvests. Their livestock’s low-fine feedstuff-like crop-residues with low dietary due to shrinking grazing land shifted to farming land. Hence, our farmers want the generation that tackles this hassle through biological treatment to get without difficulty digested, nicely evolved flavor and nutritionally in shape, extra protein content in flip offers proper milk and red meat in-phrases of high-class besides capacity. This study aimed to determine the nutritional worth of wheat chaff treated biologically by bacterial and fungal Lactobacillus Casei Shirota and Aspergillus Niger strain. It also analyzed the physical and chemical structure of fermented chaff to obtain the numerical values that indicate the increments straw value and enhance feed intake of the individual livestock.
Contribution/ Originality
This study uses a new estimation methodology of Protein estimation by the Lowry method by detecting Optical Density which aids us to verify the result gotten by calculating and analyzing the percentage of CP and CF of the treatments which makes us fully confident of analysis.

Suitability of Bacteria in Bioremediation Techniques Common for Petroleum-Related Pollutions

Pages: 1-18
Find References

Finding References

Suitability of Bacteria in Bioremediation Techniques Common for Petroleum-Related Pollutions

Search :
Google Scholor
Search :
Microsoft Academic Search

DOI: 10.18488/journal.33.2021.81.1.18

Emmanuel Oliver Fenibo

Export to    BibTeX   |   EndNote   |   RIS

Agamuthu, P., Tan, Y., & Fauziah, S. (2013). Bioremediation of hydrocarbon contaminated soil using selected organic wastes. Procedia Environmental Sciences, 18, 694-702. Available at:

Agarry, S., & Oghenejoboh, K. (2015). Enhanced aerobic biodegradation of naphthalene in soil: Kinetic modelling and half-life study. International Journal of Environmental Bioremediation, 3(2), 48-53.

Ahmad, M., Pataczek, L., Hilger, T. H., Zahir, Z. A., Hussain, A., Rasche, F., & Solberg, S. Ø. (2018). Perspectives of microbial inoculation for sustainable development and environmental management. Frontiers in Microbiology, 9, 2992. Available at:

Ajeng, A. A., Abdullah, R., Malek, M. A., Chew, K. W., Ho, Y. C., Ling, T. C., & Show, P. L. (2020). The effects of biofertilizers on growth, soil fertility, and nutrients uptake of oil palm (Elaeis guineensis) under greenhouse conditions. Processes, 8(15), 1681. Available at:

Alexis, N., & Musa, M. (2020). Current status of and future perspectives in bacterial degradation of benzo[a]pyrene. International Journal of Environmental Research and Public Health, 18(1), 262. Available at:

Ali, S., Abbas, Z., Rizwan, M., Zaheer, I. E., Yavaş, İ., Ünay, A., & Kalderis, D. (2020). Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability, 12(5), 1927. Available at:

Antízar-Ladislao, B., Lopez-Real, J., & Beck, A. J. (2006). Investigation of organic matter dynamics during in-vessel composting of an aged coal–tar contaminated soil using fluorescence excitation–emission spectroscopy. Chemosphere, 64(5), 839-847. Available at:

Atagana, H. I. (2006). Biodegradation of polyacyclic aromatic hydrocarbons in contaminated soil by biostimulation and bioaugmentation in the presence of copper (II) ions. World Journal of Microbiology and Biotechnology, 22(11), 1145-1153. Available at:

Balseiro-Romero, M., Monterroso, C., Kidd, P. S., Lu-Chau, T. A., Gkorezis, P., Vangronsveld, J., & Casares, J. J. (2019). Modelling the ex situ bioremediation of diesel-contaminated soil in a slurry bioreactor using a hydrocarbon-degrading inoculant. Journal of Environmental Management, 246, 840-848. Available at:

Bhargava, S., Wenger, K. S., & Marten, M. R. (2003). Pulsed addition of limiting-carbon during Aspergillus oryzae fermentation leads to improved productivity of a recombinant enzyme. Biotechnology and Bioengineering, 82(1), 111-117. Available at:

Brown, L. D., & Cologgi, D. L. (2015). Bioremediation of oil spills on land. Handbook of Oil Spill Science and Technology, 395–406. Available at: https://doi:10.1002/9781118989982.ch15.

Chowdhury, S., Bala, N., & Dhauria, P. (2012). Bioremediation–a natural way for cleaner environment. International Journal of Pharmaceutical, Chemical and Biological Sciences, 2(4), 600-611.

Cristorean, C., Micle, V., & Sur, I. M. (2016). A critical analysis of ex-situ bioremediation technologies of hydrocarbon polluted soils. EcoTerra Journal of Environmental Research and Protection, 13, 17-29.

Doty, S. L., Freeman, J. L., Cohu, C. M., Burken, J. G., Firrincieli, A., Simon, A., & Blaylock, M. J. (2017). Enhanced degradation of TCE on a superfund site using endophyte-assisted poplar tree phytoremediation. Environmental Science & Technology, 51(17), 10050-10058. Available at:

Ebbs, S., Hatfield, S., Nagarajan, V., & Blaylock, M. (2009). A comparison of the dietary arsenic exposures from ingestion of contaminated soil and hyper accumulating Pteris ferns used in a residential phytoremediation project. International Journal of Phytoremediation, 12(1), 121-132. Available at: https:// doi:10.1080/15226510902861784.

Frutos, F. J. G., Escolano, O., García, S., Babín, M., & Fernández, M. D. (2010). Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil. Journal of hazardous materials, 183(1-3), 806-813. Available at:

Gertler, C., Gerdts, G., Timmis, K. N., & Golyshin, P. N. (2009). Microbial consortia in mesocosm bioremediation trial using oil sorbents, slow-release fertilizer and bioaugmentation. FEMS Microbiology Ecology, 69(2), 288-300. Available at:

Gianfreda, L., & Rao, M. A. (2004). Potential of extra cellular enzymes in remediation of polluted soils: A review. Enzyme Microbiology and Technology, 35(4), 339-354. Available at: https://doi:10.1016/j.enzmictec.2004.05.006.

Gomez, F., & Sartaj, M. (2014). Optimization of field scale biopiles for bioremediation of petroleum hydrocarbon contaminated soil at low temperature conditions by response surface methodology (RSM). International Biodeterioration & Biodegradation, 89, 103-109. Available at:

Haderlein, A., Legros, R., & Ramsay, B. A. (2006). Pyrene mineralization capacity increases with compost maturity. Biodegradation, 17(4), 293-302. Available at:

Herath, I., & Vithanage, M. (2015). Phytoremediation in constructed wetlands. In: Ansari A., Gill S., Gill R., Lanza G., Newman L. (Eds.), Phytoremediation. Cham: Springer.

Hung, C. V., Cam, B. D., & Dung, B. Q. (2013). Effects of surfactant on degradation of polycyclic aromatic hydrocarbons (PAHs) in thermophilic anaerobic co-digestion of sludge from KIM-Ngu River and organic waste. Journal of Natural Science and Technology, 30(1), 36-42.

Hussain, F., Hussain, I., Khan, A. H. A., Muhammad, Y. S., Iqbal, M., Soja, G., & Yousaf, S. (2018). Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environmental and Experimental Botany, 153, 80-88. Available at:

Iosob, G. A., Prisecaru, M., Stoica, I., Călin, M., & Cristea, T. O. (2016). Biological remediation of soil polluted with oil products: An overview of available technologies. "Vasile Alecsandri" University of Bacau, 25(2), 89-101.

Jam, P., Gupta, V., Gaur, R., Lowry, M., Jaroli, D., & Chauhan, U. (2011). Bioremediation of petroleum oil contaminated soil and water. Research Journal of Environmental Toxicology, 5(1), 1-26. Available at:

Juwarkar, A. A., Misra, R. R., & Sharma, J. K. (2014). Recent trends in bioremediation, geomicrobiology and biogeochemistry. Soil Biology, 39(5), 80-100.

Kalantary, R. R., Mohseni-Bandpi, A., Esrafili, A., Nasseri, S., Ashmagh, F. R., Jorfi, S., & Ja’fari, M. (2014). Effectiveness of biostimulation through nutrient content on the bioremediation of phenanthrene contaminated soil. Journal of Environmental Health Science and Engineering, 12(1), 1-9. Available at:

Ke, C.-Y., Qin, F.-L., Yang, Z.-G., Sha, J., Sun, W.-J., Hui, J.-F., & Zhang, X.-L. (2021). Bioremediation of oily sludge by solid complex bacterial agent with a combined two-step process. Ecotoxicology and Environmental Safety, 208, 111673. Available at:

Khan, A. A., Wang, R.-F., Cao, W.-W., Doerge, D. R., Wennerstrom, D., & Cerniglia, C. E. (2001). Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Applied and Environmental Microbiology, 67(8), 3577-3585. Available at:

Kheirkhah, T., Hejazi, P., & Rahimi, A. (2020). Effects of utilizing sawdust on non-ligninolytic degradation of high concentration of n-hexadecane by white-rot fungi: Kinetic analysis of solid-phase bioremediation. Environmental Technology & Innovation, 19, 100887. Available at:

Kim, J., Lee, A. H., & Chang, W. (2018). Enhanced bioremediation of nutrient-amended, petroleum hydrocarbon-contaminated soils over a cold-climate winter: The rate and extent of hydrocarbon biodegradation and microbial response in a pilot-scale biopile subjected to natural seasonal freeze-thaw temperatures. Science of the Total Environment, 612, 903-913. Available at:

Kumar, A., Ashok, M., & Rajesh, S. (2010). Crude oil PAH constitution, degradation pathway and associated bioremediation microflora: An overview. International Journal of Environmental Sciences, 1(7), 1420-1439.

Kumar, A., Bisht, B., Joshi, V., & Dhewa, T. (2011). Review on bioremediation of polluted environment: A management tool. International Journal of Environmental Sciences, 1(6), 1079-1093.

Kumar, V., Shahi, S. K., & Singh, S. (2018). Bioremediation: An eco-sustainable approach for restoration of contaminated sites. In Microbial bioprospecting for sustainable development (pp. 115-136). Singapore: Springer.

Kushwaha, A., Rani, R., Kumar, S., & Gautam, A. (2015). Heavy metal detoxification and tolerance mechanisms in plants: Implications for phytoremediation. Environmental Reviews, 24(1), 39-51. Available at:

Lajayer, B. A., Moghadam, N. K., Maghsoodi, M. R., Ghorbanpour, M., & Kariman, K. (2019). Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: Mechanisms and efficiency improvement strategies. Environmental Science and Pollution Research, 26(9), 8468-8484. Available at:

Ławniczak, Ł., Woźniak-Karczewska, M., Loibner, A. P., Heipieper, H. J., & Chrzanowski, Ł. (2020). Microbial degradation of hydrocarbons—basic principles for bioremediation: A review. Molecules, 25(4), 856. Available at:

Lee, M. D., & Swindoll, C. M. (1993). Bioventing for in situ remediation. Hydrological Sciences Journal, 38(4), 273-282.

Li, C., Ji, X., & Luo, X. (2019). Phytoremediation of heavy metal pollution: A bibliometric and scientometric analysis from 1989 to 2018. International Journal of Environmental Research and Public Health, 16(23), 4755. Available at:

Lu, H., Wang, W., Li, F., & Zhu, L. (2019). Mixed-surfactant-enhanced phytoremediation of PAHs in soil: Bioavailability of PAHs and responses of microbial community structure. Science of the Total Environment, 653, 658-666. Available at:

Mark, H., Kirsten, S., Hung, L., & Richard, G. Z. (2002). Bioventing of gasoline contaminated soil under varied laboratory conditions. Paper presented at the SCE/EWRI of ASCE Environmental Engineering Conference, Niagara.

Master, E. R., Lai, V. W.-M., Kuipers, B., Cullen, W. R., & Mohn, W. W. (2002). Sequential anaerobic− aerobic treatment of soil contaminated with weathered Aroclor 1260. Environmental Science & Technology, 36(1), 100-103. Available at:

Meckenstock, R. U., Safinowski, M., & Griebler, C. (2004). Anaerobic degradation of polycyclic gromatic hydrocarbons. FEMS Microbiology Ecology, 49(1), 27-36. Available at: https://doi:10.1016/j.femsec.2004.02.019.

Micle, V., & Neag, G. (2009). Methods and equipment of remediating soil and groundwater. Ed. U.T. Press Cluj-Napoca in Romanian.

Mishra, A., Mishra, S. P., Arshi, A., Agarwal, A., & Dwivedi, S. K. (2020). Plant-microbe interactions for bioremediation and phytoremediation of environmental pollutants and agro-ecosystem development. In Bioremediation of Industrial Waste for Environmental Safety (pp. 415-436). Singapore: Springer.

Nedjimi, B. (2021). Phytoremediation: A sustainable environmental technology for heavy metals decontamination. SN Applied Sciences, 3(3), 1-19. Available at:

Nkeng, G. E., Nkwelang, G., & Mattew, O. (2012). Bioremediation of petroleum refinery oily sludge in topical soil. Open Access Scientific Reports, 1(2), 1-4.

Nwinyi, O. C., Picardal, F. W., An, T. T., & Amund, O. O. (2013). Aerobic degradation of naphthalene, fluoranthene, pyrene and chrysene using indigenous strains of bacteria isolated from a former industrial site. Canadian Journal of Pure and Applied Sciences, 7(2), 2303-2314.

Ossai, I. C., Ahmed, A., Hassan, A., & Hamid, F. S. (2020). Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environmental Technology & Innovation, 17(5), 100526.

Partovinia, A., & Naeimpoor, F. (2018). Application of cell immobilization in slurry-phase bioremediation: Phenanthrene biodegradation and detoxification. In Toxicity and Biodegradation Testing (pp. 105-121). New York: Humana Press.

Peoxoto, R. S., Vermelho, A. B., & Rosado, A. S. (2011). Petroleum-degrading enzymes: Bioremediation and new prospects. Enzyme Research, 2011, 1-7. Available at: https://doi:10.4061/2011/475193.

Piccini, M., Raikova, S., Allen, M. J., & Chuck, C. J. (2019). A synergistic use of microalgae and macroalgae for heavy metal bioremediation and bioenergy production through hydrothermal liquefaction. Sustainable Energy & Fuels, 3(1), 292-301. Available at:

Rahman, Z., & Singh, V. P. (2020). Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. Environmental Science and Pollution Research, 27(22), 27563-27581. Available at:

Ravanipour, M., Kalantary, R. R., Mohseni-Bandpi, A., Esrafili, A., Farzadkia, M., & Hashemi-Najafabadi, S. (2015). Experimental design approach to the optimization of PAHs bioremediation from artificially contaminated soil: Application of variables screening development. Journal of Environmental Health Science and Engineering, 13(1), 1-10. Available at:

Robles-González, I. V., Fava, F., & Poggi-Varaldo, H. M. (2008). A review on slurry bioreactors for bioremediation of soils and sediments. Microbial Cell Factories, 7(1), 1-16. Available at:

Rocchetti, L., Beolchini, F., Ciani, M., & Anno, A. D. (2011). Improvement of bioremediation performance for the degradation of petroleum hydrocarbons in contaminated sediments. Applied and Environmental Soil Science, 2011, 1-8. Available at: https://doi:10.1155/2011/319657.

Rockne, K. J., & Reddy, K. R. (2003). Bioremediation of contaminated sites. Paper presented at the International e-Conference on Modern Trends in Foundation Engineering: Geotechnical Challenges and Solutions. Indian institute of Technology, Madons India.

Rubinos, D. A., Villasuso, R., Muniategui, S., Barral, M. T., & Díaz-Fierros, F. (2007). Using the landfarming technique to remediate soils contaminated with hexachlorocyclohexane isomers. Water, Air, and Soil Pollution, 181(1-4), 385-399. Available at:

Ruggaber, T. P., & Talley, J. W. (2006). Enhancing bioremediation with enzymatic processes: A review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 10(2), 73-85. Available at:

Ruley, J. A., Tumuhairwe, J. B., Amoding, A., Opolot, E., Oryem-Origa, H., & Basamba, T. (2019). Assessment of plants for phytoremediation of hydrocarbon-contaminated soils in the Sudd Wetland of South Sudan. Plant, Soil and Environment, 65(9), 463-469. Available at:

Saber, M., Abouziena, H., Hoballah, E., Haggag, W. M., Abd-Elzaher, F., El-Ashry, S., & Zaghloul, A. (2016). The use of phytoremediation to combat contamination of soil ecosystems. International Scientific Researchs Journal, 72(3), 10-27. Available at:

Salinas-Martínez, A., De los Santos-Córdova, M., Soto-Cruz, O., Delgado, E., Pérez-Andrade, H., Háuad-Marroquín, L., & Medrano-Roldán, H. (2008). Development of a bioremediation process by biostimulation of native microbial consortium through the heap leaching technique. Journal of Environmental Management, 88(1), 115-119. Available at:

Salleh, A. B., Ghazali, F. M., Abd Rahman, R. N. Z., & Basri, M. (2003). Bioremediaiton of petroleum hydrocarbon pollution. Indian Journal of Biotechnology, 2, 411-425.

Scherr, K. E., Hasinger, M., Mayer, P., & Loibner, A. P. (2009). Effect of vegetable oil addition on bioaccessibility and biodegradation of polycyclic aromatic hydrocarbons in historically contaminated soils. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 84(6), 827-835. Available at:

Sharma, S. (2012). Bioremediation: Features, strategies and applications. Asian Journal of Pharmacy and Life Science, 2(2), 202-213.

Shewfelt, K., Lee, H., & Zytner, R. G. (2005). Optimization of nitrogen for bioventing of gasoline contaminated soil. Journal of Environmental Engineering and Science, 4(1), 29-42. Available at:

Shukla, K. P., Singh, N. K., & Sharma, S. (2010). Bioremediation: developments, current practices and perspectives. Journal of Genetic Engineering and Biotechnology, 3, 1-20.

Singh, A., & Prasad, S. (2015). Remediation of heavy metal contaminated ecosystem: An overview on technology advancement. International Journal of Environmental Science and Technology, 12(1), 353-366. Available at:

Steliga, T., & Kluk, D. (2020). Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons. Ecotoxicology and Environmental Safety, 194, 110409. Available at: https://doi:10.1016/j.ecoenv.2020.110409.

Thapa, B., Kc, A. K., & Ghimire, A. (2012). A review on bioremediation of petroleum hydrocarbon contaminants in soil. Kathmandu University Journal of Science, Engineering and Technology, 8(1), 164-170. Available at:

Tomei, M. C., & Daugulis, A. J. (2013). Ex situ bioremediation of contaminated soils: An overview of conventional and innovative technologies. Critical Reviews in Environmental Science and Technology, 43(20), 2107-2139. Available at:

U.S. Environmental Protection Agency (USEPA). (1993). Bioremediation using the land treatment concept. US Environmental Protection Agency. Office of Research and Development, Washington, D.C. Report.pdf.

Wang, Q., Yang, M., Song, X., Tang, S., & Yu, L. (2019). Aerobic and anaerobic biodegradation of 1, 2-dibromoethane by a microbial consortium under simulated groundwater conditions. International Journal of Environmental Research and Public Health, 16(19), 3775. Available at:

Wang, Q., Zhang, S., Li, Y., & Klassen, W. (2011). Potential approaches to improving biodegradation of hydrocarbons for bioremediation of crude oil pollution. Journal of Environmental Protection, 2(01), 47-55. Available at:

Xu, J. (2012). Bioremediation of crude oil contaminated soil by petroleum-degrading active bacteria chapter. 8.

Xu, R., & Obbard, J. P. (2003). Effect of nutrient amendments on indigenous hydrocarbon biodegradation in oil-contaminated beach sediments. Journal of Environmental Quality, 32(4), 1234-1243. Available at:

Yan, A., Wang, Y., Tan, S. N., Yusof, M. L. M., Ghosh, S., & Chen, Z. (2020). Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 11, 1-25. Available at:

Yan, L., Van Le, Q., Sonne, C., Yang, Y., Yang, H., Gu, H., & Peng, W. (2021). Phytoremediation of radionuclides in soil, sediments and water. Journal of Hazardous Materials, 407, 124771. Available at:

Zhalnina, K., Louie, K. B., Hao, Z., Mansoori, N., da Rocha, U. N., Shi, S., & Bowen, B. P. (2018). Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology, 3(4), 470-480. Available at:

No any video found for this article.
Emmanuel Oliver Fenibo (2021). Suitability of Bacteria in Bioremediation Techniques Common for Petroleum-Related Pollutions. The Asia Journal of Applied Microbiology, 8(1): 1-18. DOI: 10.18488/journal.33.2021.81.1.18
Petroleum hydrocarbon is an energy source that drives our modern society and at the same time impacts the environment. The consequences of hydrocarbon pollution range from microbial diversity distortion to cancer scourge in humans. To reverse these negative trends imposed by the contaminated environment, deliberate remediation steps, need to be employed, which depend on physical, chemical, and biological mechanistic principles. The physicochemical approach is quick-oriented but is more expensive relative to the biological option. The latter uses microorganisms, their parts, or enzymes to decontaminate and detoxify hazardous fractions of hydrocarbons into benign products. This biotechnology is referred to as bioremediation. Bioremediation effectiveness is achieved through the implementation of various techniques that are carried out under aerobic or anaerobic conditions or in ex-situ or in-situ. However, the aeration-related condition is the most deciding factor for microbial adaptation and survival. In aerobic conditions, fungi, bacteria, and algae contribute actively in the biotransformation and detoxification process, thus give the best result in such circumstances. However, in an anoxic environment, the prominence of bacteria comes into play (due to their ability to thrive in extreme environments) in degrading the contaminants into less harmful compounds. Thus, bacteria stand the chance of been used as the most resourceful biological tool for petroleum biotechnology including environmental remediation of extreme environments due to their high adaptive index value. Moreover, the hydrocarbon impacted environment is often characterized by high salinity, extreme temperatures, high pressure, and extreme pH.
Contribution/ Originality
This review contributes to existing literature by indicating the utility of bacteria in bioremediation techniques.