International Journal of Mathematical Research

Published by: Conscientia Beam
Online ISSN: 2306-2223
Print ISSN: 2311-7427
Quick Submission    Login/Submit/Track

No. 4

Applied Optimization and Approximation

Pages: 37-48
Find References

Finding References

Applied Optimization and Approximation

Search :
Google Scholor
Search :
Microsoft Academic Search

Octav Olteanu

Export to    BibTeX   |   EndNote   |   RIS

  1. O. Olteanu, "Kinematics and optimization in railway transport", National Railway Stock Symposium, X - th Edition, Presented Works, November, 23-24 2012, Matrix Rom, Bucharest, (In Romanian), 2012.
  2. N. I. Akhiezer, The classical moment problem and some related questions in analysis. Edinburgh and London: Oliver and Boyd, 1965.
  3. V. I. Arnold, Mathematical methods of classical mechanics, 2nd ed. New York: Springer, 1989.
  4. R. Cristescu, Ordered vector spaces and linear operators. Ed. Tunbridge Wells, Kent: Academiei, Bucharest and Abacus Press, 1976.
  5. R. B. Holmes, Geometric functional analysis and its applications. New York: Springer-Verlag Inc., 1975.
  6. S. Boyd, and L. Vandenberghe, Convex optimization: Cambridge University Press, 2004, 2009.
  7. W. Rudin, Real and complex analysis, 3rd ed.: McGraw – Hill, Inc., 1987.
  8. J. Cassier, "Problème des moments sur un compact de Rn et décomposition des  polyn?mes à plusieurs variables," J. Funct. Anal., vol. 58, pp. 254-266, 1984.
  9. L. L. Lemnete-Ninulescu and A. Zl?tescu, "Some new aspects of the L moment problem," Rev. Roumaine Math. Pures Appl., vol. 55, pp. 197-204, 2010.
  10. J. M. Mih?il?, O. Olteanu, and C. Udri?te, "Markov-type moment problems for arbitrary compact and for some non-compact Borel subsets of Rn," Rev. Roumaine Math. Pures Appl., vol. 52, pp. 655-664, 2007.
  11. A. Olteanu and O. Olteanu, "Some unexpected problems of the moment problem," in Proc. of the Sixth Congress of Romanian Mathematicians, Ed. Academiei, Vol. I (Scientific Contributions), Bucharest, 2009, pp. 347-355.
  12. O. Olteanu, "Application de théorèmes de prolongement d’opérateurs linéaires au problème des moments et à une généralisation d’un théorème de Mazur-Orlicz," C. R. Acad. Sci. Paris 313, Série I, pp. 739-742, 1991.
  13. O. Olteanu, Geometric aspects in operator theory and applications. Saarbr?cken: Lambert Academic Publishing, 2012.
  14. O. Olteanu, "Moment problems on bounded and unbounded domains," International Journal of Analysis, Article ID 524264. Available:, vol. 2013, p. 7, 2013.
  15. O. Olteanu, "New results on Markov moment problem," International Journal of Analysis, Article ID 901318. Available:, vol. 2013, p. 17, 2013.
  16. O. Olteanu, "Approximation and Markov moment problem on concrete spaces," Rendiconti del Circolo Matematico di Palermo, vol. 63, pp. 161-172, 2014.
  17. M. Putinar and F. H. Vasilescu, "Problème des moments sur les compacts semi-algébriques," C. R. Acad. Sci. Paris, 323, Série I, pp. 787-791, 1996.
No any video found for this article.
Octav Olteanu (2014). Applied Optimization and Approximation. International Journal of Mathematical Research, 3(4): 37-48. DOI:
The present work deals with optimization in kinematics, generalizing previous results of the author. A second theme is maximizing the constrained gain linear function and minimizing the constrained cost function. Elementary notions of optimal control are considered as well. Finally, polynomial approximation results on unbounded subsets in several variables are applied to the moment problem. The existence of the solution of a two dimensional moment problem is characterized in terms of quadratic forms.
Contribution/ Originality
The paper contributes the first logical analysis of the problems solved in the theorems 2.1, 2.2 (optimization in kinematics), 3.3 (minimization of the total cost), Lemma 4.2 (approximation), Theorem 4.3 (solving the moment problem). The paper’s primary contribution is finding that suitable polynomial approximation yields solving the multidimensional moment problem. This study documents how practical and theoretical  problems can be solved.