Contact Us

For Marketing, Sales and Subscriptions Inquiries
Rockefeller Center, 45 Rockefeller Plaza
20th Flr Unit #5, New York, NY 10111
United States

Conference List

Animal Review

September 2014, Volume 1, 3, pp 45-56

Seleno-Cystine Affects the Fatty Acid Profile in In Vitro Incubated Ovine Ruminal Fluid Containing α-Linolenic Acid

Marian Czauderna


Rozbicka Wieczorek A.J


Więsyk E

Marian Czauderna 1 ,

Rozbicka Wieczorek A.J 1 WiÄ™syk E 1 
  1. The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Poland 1


The influence of seleno-cystine (CySe2) added to ovine ruminal fluids containing α-linolenic acid (αLNA) on the profile of fatty acids (FA) was investigated. Fluids were incubated in vitro at 39°C under CO2 either alone (RF) or with αLNA (1.67 mg/ml) or with a combination of αLNA with either a low (1.34 μg/ml) or high (3.33 μg/ml) level of Se as CySe2. Fluids were removed after 0, 6, 12, 18, 24 hrs of incubation and then analyzed to determine FA levels. αLNA added to the fluids without/with CySe2 decreased the C18α0 concentration for incubation at all times from 6 hrs compared with the RF or the fluid containing CySe2. αLNA added to the fluids without/with CySe2 decreased the biohydrogenation yield to C18:0. CySe2 added to the fluids decreased the C18:0 concentration and the index of the biohydrogenation to C18:0 compared with the RF. The higher concentration of CySe2 in the fluids with αLNA reduced the accumulation of trans11C18:1 for incubation at all times from 18 hrs compared with the fluids with αLNA, irrespective of the presence of the lower concentration of CySe2. The lowest concentration of trans11C18:1 in the fluids with LNA and the higher concentration of CySe2 correlated with the lowest yield of the isomerization of αLNA into cis9trans11cis15C18:3 and the lowest yield of the initial biohydrogenation of cis9trans11cis15C18:3 to trans11cis15C18:2 in the fluids containing αLNA and the higher concentration of CySe2. CySe2 added to the fluids with αLNA decreased the ratio of polyunsaturated FA to saturated FA for incubation at all times from 12 hrs compared with the fluids containing αLNA. CySe2 in the fluids without/with αLNA reduced the FA sum in the fluids.
Contribution/ Originality
Our original study documents that CySe2 added to the ovine ruminal fluids, irrespective of the presence of αLNA, affects concentrations of fatty acids, the capacity of the bacterial isomerases and the biohydrogenation yield of unsaturated fatty acids in in vitro incubated ruminal fluids compared with the control fluid. 



  1. M. Navarro-Alarcon and C. Cabrera-Vique, "Selenium in food and the human body: A review," Sci. Total Envir., vol. 400, pp. 115-141, 2008.
  2. C. Thiry, A. Ruttens, L. De Temmerman, Y.-J. Schneider, and L. Pussemier, "Current knowledge in species-related bioavailability of selenium in food," Food Chem., vol. 130, pp. 767–784, 2012.
  3. D. T. Juniper, R. H. Phipps, E. Ramos-Morales, and G. Bertin, "Effect of dietary supplementation with selenium-enriched yeast or sodium selenite on selenium tissue distribution and meat quality in beef cattle," J. Anim. Sci., vol. 86, pp. 3100–3109, 2008.
  4. J. B. J. Van Ryssen and G. E. Schroeder, "Effect of heat processing of protein sources on the disappearance of their selenium from mobile bags in the digestive tract of dairy cows," Anim. Feed Sci. Technol., vol. 107, pp. 15–27, 2003.
  5. T. P. Lyons and K. A. Jacques, "Science and technology in the feed industry," in Proceedings of Alltech’s Seventeenth Annual Symposium, Nottingham University Press, Nottingham, NG11 0AX, United Kingdom, 2001, pp. 309-415.
  6. D. M. Driscoll and P. R. Coperland, "Mechanism and regulation of selenoprotein synthesis," Annu. Rev. Nutr., vol. 23, pp. 17-40, 2003.
  7. V. N. Gladyshev, G. V. Kryukov, D. E. Fomenko, L. Dolph, and D. L. Hatfiel, "Identification of trace element - containing proteins in genomic databases," Annu. Rev. Nutr., vol. 24, pp. 579-596, 2004.
  8. A. Buccioni, M. Decandia, S. Minieri, G. Molle, and A. Cabiddu, "Lipid metabolism in the rumen: New insights on the lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors," Anim. Feed Sci. Technol., vol. 174, pp. 1–25, 2012.
  9. M. Kouba and J. Mourot, "A review of nutritional effects on fat composition of animal products with special emphasis on n-3 polyunsaturated fatty acids," Biochimie, vol. 93, pp. 13-17, 2011.
  10. K. Raes, S. De Smet, and D. Demeyer, "Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids and conjugated linoleic acid in lamb, beef and pork meat: A review," Animal Feed Sci. Technol., vol. 113, pp. 199–221, 2004.
  11. V. Wijendran and K. C. Hayes, "Dietary n-6 and n-3 fatty acid balance and cardiovascular, health," Annu. Rev. Nutr., vol. 24, pp. 597-615, 2004.
  12. S. H. Choi and M. K. Song, "Effect of C18-polyunsaturated fatty acids on their direct incorporation into the rumen bacterial lipids and CLA production in vitro," Asian-Australasian J. Anim. Sci., vol. 18, pp. 512-515, 2005.
  13. T. C. Jenkins, R. J. Wallace, P. J. Moate, and E. E. Mosley, "Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem," J. Anim. Sci., vol. 86, pp. 397–412, 2008.
  14. R. Sieber, M. Collomb, A. Aeschlimann, P. Jelen, and H. Eyer, "Impact of microbial cultures on conjugated linoleic acid in dairy products – review," Int. Dairy J., vol. 14, pp. 1-15, 2004.
  15. M. Doreau and A. Ferlay, "Effect of dietary lipids on nitrogen metabolism in the rumen: A review," Livest. Prod. Sci., vol. 43, pp. 97-110, 1995.
  16. Kubo, H. Muroi, M. Himejima, Y. Yamagiwa, H. Mera, K. Tokushima, S. Ohta, and T. Kamikawa, "Structure-antibacterial activity relationships of anacardic acids," J. Agr. Food Chem., vol. 41, pp. 1016-1019, 1993.
  17. T. G. Nagaraja, C. J. Newbold, C. J. Nevel, and D. I. Demeyer, Manipulation of ruminal fermentation. In: P.N. Hobson, and C.S. Stewart (Eds.) The rumen microbial ecosystem: Springer Netherlands, 1997.
  18. C. J. Zheng, J.-S. Yoo, T.-G. Lee, H.-Y. Cho, Y.-H. Kim, and W.-G. Kim, "Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids," FEBS Lett., vol. 579, pp. 5157–5162, 2005.
  19. M. Szumacher-Strabel, A. Cie?lak, and A. Nowakowska, "Effect of oils rich in linoleic acid on in vitro rumen fermentation parameters of sheep, goats and dairy cows," J. Anim. Feed Sci., vol. 18, pp. 440-452, 2009.
  20. D. Jal?, S. Kišidayová, and F. Nerud, "Effect of plant oils and organic acids on rumen fermentation in vitro," Folia Microbiol., vol. 47, pp. 171-177, 2002.
  21. D. E. Bauman, B. A. Corl, and D. G. Peterson, The biology of conjugated linoleic acids in ruminants. In: J.L. Sebedio, W.W. Christie, R.O. Adlof, Eds. Advances in conjugated linoleic acid research vol. 2. Champagign, Illinois: AOCS Press, 2003.
  22. W. J. Wahle, S. D. Heys, and D. Rotondo, "Conjugated linoleic acids: Are they beneficial or detrimental to health?," Progress in Lipid Res., vol. 43, pp. 553–587, 2004.
  23. M. Czauderna, J. Kowalczyk, and J. R. Wallace, "Selenite and selenate affected the fatty acid profile in in vitro incubated ovine ruminal fluid containing linoleic acid," J. Anim. Feed Sci., vol. 21, pp. 477-492, 2012.
  24. M. Czauderna, J. Kowalczyk, and M. Marounek, "Selenite and selenate affect the fatty acid profile in in vitro incubated ovine ruminal fluid containing linseed oil," Czech J. Anim. Sci., vol. 58, pp. 328–341, 2013.
  25. M. Czauderna, J. Kowalczyk, K. M. Nied?wiedzka, I. W?sowska, and J. J. Paj?k, "The effect of selenium and linseed oil on growth of sheep and content of selected fatty acids in M. longissimus dorsi," J. Anim. Feed Sci., vol. 13, pp. 303-306, 2004.
  26. M. Czauderna, J. Kowalczyk, K. M. Nied?wiedzka, I. W?sowska, J. J. Paj?k, E. Bulska, and A. Ruszczy?ska, "The effect of linseed oil and selenium on the content of fatty acids and some elements in the liver and selected tissues of sheep," J. Anim. Feed Sci., vol. 13, pp. 103-106, 2004.
  27. M. Czauderna, J. Kowalczyk, and K. Korniluk, "Effect of dietary conjugated linoleic acid mixture and selenized yeast on concentrations of selected fatty acids and mineral elements in rats," Arch. Anim. Nutr., vol. 61, pp. 135-150, 2007.
  28. Korniluk, M. Czauderna, J. Kowalczyk, A. Mieczkowska, M. Taciak, and ?. Leng, "Influence of dietary conjugated linoleic acid isomers and selenium on growth, feed efficiency, and liver fatty acid profile in rats," J. Anim. Feed Sci., vol. 15, pp. 131-146, 2006.
  29. H. Traulsen, H. Steinbrenner, D. P. Buchczyk, L. O. Klotz, and H. Sies, "Selenoprotein P protects low-density lipoprotein against oxidation," Free Radical Res., vol. 38, pp. 123-128, 2004.
  30. A. M. Crespo, M. A. Reis, and M. J. Lanca, "Effect of selenium supplementation on polyunsaturated fatty acids in rats," Biol. Trace Elem. Res., vol. 47, pp. 335-341, 1995.
  31. G. Demirel, A. M. Wachira, L. A. Sinclair, R. G. Wilkinson, J. D. Wood, and M. Enser, "Effects of dietary n-3 polyunsaturated fatty acids, breed and dietary vitamin E on the fatty acids of lamb muscle, liver and adipose tissue," Brit. J. Nutr., vol. 91, pp. 551-565, 2004.
  32. W.-G. Kim, R. H. Liu, J. L. Rychlik, and J. B. Russell, "The enrichment of a ruminal bacterium (Megasphaera Elsdenii YJ-4) that produces the trans-10,cis-12 isomer of conjugated linoleic acid," J. Appl. Microbiol., vol. 92, pp. 976–982, 2002.
  33. E. Wina, S. Muetzel, E. Hoffmann, H. P. S. Makkarc, and K. Becker, "Saponins containing methanol extract of Sapindus rarak affect microbial fermentation, microbial activity and microbial community structure in vitro," Anim. Feed Sci. Tech., vol. 121, pp. 159-174, 2005.
  34. X. Z. Li, S. H. Choi, G. L. Jin, C. G. Yan, R. J. Long, C. Y. Liang, and M. K. Song, "Linolenic acid in association with malate or fumarate increased CLA production and reduced methane generation by rumen microbes," Asian-Aust. J. Anim. Sci., vol. 22, pp. 819–826, 2009.
  35. A. Troegeler-Meynadier, M. C. Nicot, C. Bayourthe, R. Moncoulon, and F. Enjalbert, "Effects of pH and concentrations of linoleic and linolenic acids on extent and intermediates of ruminal biohydrogenation in vitro," J. Dairy Sci., vol. 86, pp. 4054–4063, 2003.
  36. A. G. Harfoot and G. P. Hazelwood, Lipid metabolism in the rumen. In: The rumen microbial ecosystem. P.N. Hobson, and C.S. Stewart (Eds). London, UK: Chapman & Hall, 1997.
  37. J. T. Lin and T. A. McKeon, HPLC of acyl lipids. New York: HNB Publishing, 2005.


Google Scholor ideas Microsoft Academic Search bing Google Scholor


Competing Interests:


Related Article