Citations


Contact Us

For Marketing, Sales and Subscriptions Inquiries
Rockefeller Center, 45 Rockefeller Plaza
20th Flr Unit #5, New York, NY 10111
United States

Conference List

Fear of Covid-19 and Intentions towards Adopting E-Health Services: Exploring the Technology Acceptance Model in the Scenario of Pandemic

Muhammad Zubair Elahi

,

Gao Liang

,

Muhammad Jawad Malik

,

Sana Dilawar

,

Bena Ilyas

Muhammad Zubair Elahi 1 Gao Liang 1 ,
;
Muhammad Jawad Malik 3
Sana Dilawar 1 Bena Ilyas 5

  1. School of Public Affairs, University of Science and Technology of China, Anhui, P.R. China. 1

  2. School of Management, Business Administration, University of Science and Technology of China, Anhui, P.R. China. 3

  3. Institute of Business Management and Administrative Sciences, The Islamia University of Bahawalpur, Pakistan 5

Pages: 270-291

DOI: 10.18488/journal.62.2021.84.270.291

Share :

Article History:

Received: 12 February, 2021
Revised: 15 March, 2021
Accepted: 19 April, 2021
Published: 24 May, 2021


Abstract:

The aim of this paper was to investigate the link between fear of Covid-19 and individuals’ behavioral intentions toward adopting e-health services by expanding the technology acceptance model (TAM) to incorporate fear of the Covid-19 factor. To empirically testing our proposed theoretical model, we conducted a research survey in Pakistan and collected data from 624 individuals utilizing a non-probability convenience sampling strategy. The outcomes of our study declare that fear of Covid-19 are positively associated with individuals’ attitude and their subsequent behavioral intentions towards adopting e-health services. Perceived ease of use and perceived usefulness of e-health services mediated the relationship between fear of Covid-19 and individuals’ attitude towards adopting e-health services. This research is highly significant in the current scenario of Covid-19. Our study offers a theoretical model to understand why and how fear of Covid-19 is related to an individual’s intentions for adopting e-health services. Moreover, this study also extends the literature of the technology acceptance model TAM by pinpoint the impact of fear of Covid-19.
Contribution/ Originality
This study investigates the link between fear of Covid-19 and individuals’ behavioral intentions toward adopting e-health services by expanding the technology acceptance model (TAM) to incorporate fear of the Covid-19 factor.

Keywords:

Fear of Covid-19, TAM, e-health, Technology adoption, Behavioral intentions, Perceived eses of use , Perceived usefulness.

Reference:

Aggelidis, V. P., & Chatzoglou, P. D. (2009). Using a modified technology acceptance model in hospitals. International Journal of Medical Informatics, 78(2), 115-126. Available at: https://doi.org/10.1016/j.ijmedinf.2008.06.006.

Ahorsu, D. K., Lin, C.-Y., Imani, V., Saffari, M., Griffiths, M. D., & Pakpour, A. H. (2020). The fear of COVID-19 scale: development and initial validation. International Journal of Mental Health and Addiction, 1, 1-9. Available at: https://doi.org/10.1007/s11469-020-00270-8.

Alam, M. Z., Hoque, M. R., Bao, Y., & Sorwar, G. (2017). Investigating factors influencing the adoption of e-Health in developing countries: A patient’s perspective. Informatics for Health and Social Care, 42(1), 1-17. Available at: https://doi.org/10.3109/17538157.2015.1075541., M. R., Hu, W., & Barua, Z. (2020). Factors influencing the adoption of health services in a developing country: A patient-centric study. International Journal of Information Management, 50, 128-143. Available at: https://doi.org/10.1016/j.ijinfomgt.2019.04.016.

Albahri, A., Hamid, R. A., Alwan, J. K., Al-Qays, Z., Zaidan, A., Zaidan, B., & Almahdi, E. (2020). Role of biological data mining and machine learning techniques in detecting and diagnosing the novel coronavirus (COVID-19): A systematic review. Journal of Medical Systems, 44(7), 1-11.

AlBar, A. M., & Hoque, M. R., Bao, Y., & Sorwar, G. (2017). Investigating factors influencing the adoption of e-Health in developing countries: A patient’s perspective. Informatics for Health and Social Care, 42(1), 1-17. Available at: https://doi.org/10.3109/17538157.2015.1075541., M. R. (2019). Patient acceptance of e-health services in Saudi Arabia: An integrative perspective. Telemedicine and e-Health, 25(9), 847-852. Available at: https://doi.org/10.1089/tmj.2018.0107.

Ali, B. M., & Younes, B. (2013). The impact of information systems on user performance: An exploratory study. Journal of Knowledge Management, Economics and Information Technology, 3(2), 128-154.

Alsharo, M., Alnsour, Y., & Alabdallah, M. (2020). How habit affects continuous use: Evidence from Jordan’s national health information system. Informatics for Health and Social Care, 45(1), 43-56. Available at: https://doi.org/10.1080/17538157.2018.1540423.

Amadu, L., Muhammad, S. S., Mohammed, A. S., Owusu, G., & Lukman, S. (2018). Using technology acceptance model to measure the ese of social media for collaborative learning in Ghana. Journal of Technology and Science Education, 8(4), 321-336. Available at: https://doi.org/10.3926/jotse.383.

Amir, S. J. (2020). COVID-19: Science and global health governance under attack. SAMJ: South African Medical Journal, 110(6), 1-2. Available at: https://doi.org/10.7196/samj.2020v110i5.14820.

Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411-423. Available at: https://doi.org/10.1037/0033-2909.103.3.411.

Andersson, G., Titov, N., Dear, B. F., Rozental, A., & Carlbring, P. (2019). Internet-delivered psychological treatments: From innovation to implementation. World Psychiatry, 18(1), 20-28. Available at: https://doi.org/10.1002/wps.20610.

Backhaus, A., Agha, Z., Maglione, M., Repp, A., Ross, B., Zuest, D., & Thorp, S. (2012). Videoconferencing psychotherapy: A systematic review. Psychological Services, 9(2), 111-131. Available at: https://doi.org/10.1037/a0027924.

Bacon, D. R., Sauer, P. L., & Young, M. (1995). Composite reliability in structural equations modeling. Educational and Psychological Measurement, 55(3), 394-406. Available at: https://doi.org/10.1177/0013164495055003003.

Badalato, G. M., Kaag, M., Lee, R., Vora, A., & Burnett, A. (2020). Role of telemedicine in urology: Contemporary practice patterns and future directions. Urology Practice, 7(2), 122-126. Available at: https://doi.org/10.1097/upj.0000000000000094.

Berryhill, M. B., Culmer, N., Williams, N., Halli-Tierney, A., Betancourt, A., Roberts, H., & King, M. (2019). Videoconferencing psychotherapy and depression: A systematic review. Telemedicine and e-Health, 25(6), 435-446. Available at: https://doi.org/10.1089/tmj.2018.0058.

Bobbitt, L. M., & , P. A. (2001). Integrating attitudinal theories to understand and predict use of technology-based self-service: The Internet as an illustration. International Journal of Service Industry Management, 12(5), 423-450. Available at: https://doi.org/10.1108/eum0000000006092.

Borges, J. U., & Kubiak, T. (2016). Continuous glucose monitoring in type 1 diabetes: Human factors and usage. Journal of Diabetes Science and Technology, 10(3), 633-639. Available at: https://doi.org/10.1177/1932296816634736.

Chang, M.-Y., Pang, C., Tarn, J. M., Liu, T.-S., & Yen, D. C. (2015). Exploring user acceptance of an e-hospital service: An empirical study in Taiwan. Computer Standards & Interfaces, 38, 35-43. Available at: https://doi.org/10.1016/j.csi.2014.08.004.

Chau, P. Y., & Hu, P. J.-H. (2002). Investigating healthcare professionals’ decisions to accept telemedicine technology: An empirical test of competing theories. Information & Management, 39(4), 297-311. Available at: https://doi.org/10.1016/s0378-7206(01)00098-2.

Chauhan, S., & Jaiswal, M. (2017). A meta-analysis of e-health applications acceptance: Moderating impact of user types and e-health application types. Journal of Enterprise Information Management, 30(2), 295-319. Available at: https://doi.org/10.1108/jeim-08-2015-0078.

Chen, R.-F., & Hsiao, J.-L. (2012). An empirical study of physicians' acceptance of hospital information systems in Taiwan. Telemedicine and e-Health, 18(2), 120-125. Available at: https://doi.org/10.1089/tmj.2011.0081.

Chin, W. W. (2010). How to write up and report PLS analyses. In Handbook of partial least squares (pp. 655-690). Berlin, Heidelberg: Springer.

Chin, W. W. (1998). Commentary: Issues and opinion on structural equation modeling. Modern Methods for Business Research, 295(2), 295-336.

Chismar, W. G., & Wiley-Patton, S. (2003). Does the extended technology acceptance model apply to physicians. Paper presented at the 36th Annual Hawaii International Conference on System Sciences, 2003. Proceedings of the, 2003. IEEE., W. G., & Wiley-Patton, S. (2003). Does the extended technology acceptance model apply to physicians. Paper presented at the 36th Annual Hawaii International Conference on System Sciences, 2003. Proceedings of the, 2003. IEEE.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: L. Erlbaum Associates.

Covid, T. C., & Team, R. (2020). Severe outcomes among patients with coronavirus disease 2019 (COVID-19)-United States, February 12-March 16, 2020. Morbidity and Mortality Weekly Report, 69, 343-346.

Dalglish, S. L. (2020). COVID-19 gives the lie to global health expertise. The Lancet, 395(10231), 1189. Available at: https://doi.org/10.1016/s0140-6736(20)30739-x.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. Available at: https://doi.org/10.2307/249008.

Davis, F. D. (1993). User acceptance of information technology: System characteristics, user perceptions and behavioral impacts. International Journal of Man-Machine Studies, 38(3), 475-487. Available at: https://doi.org/10.1006/imms.1993.1022.

Davis, F. D., & Venkatesh, V. (2004). Toward preprototype user acceptance testing of new information systems: Implications for software project management. IEEE Transactions on Engineering management, 51(1), 31-46. Available at: https://doi.org/10.1109/tem.2003.822468.

Drissi, N., Ouhbi, S., Marques, G., de la Torre Díez, I., Ghogho, M., & Janati, I. M. A. (2020). A systematic literature review on e-mental health solutions to assist health care workers during COVID-19. Telemedicine and e-Health. Available at: https://doi.org/10.1089/tmj.2020.0287.

Elenkov, D. S. (1997). Strategic uncertainty and environmental scanning: The case for institutional influences on scanning behavior. Strategic Management Journal, 18(4), 287-302. Available at: https://doi.org/10.1002/(sici)1097-0266(199704)18:4%3C287::aid-smj865%3E3.0.co;2-b.

Faqih, K. M., & Jaradat, M.-I. R. M. (2015). Mobile healthcare adoption among patients in a developing country environment: Exploring the influence of age and gender differences. International Business Research, 8(9), 142. Available at: https://doi.org/10.5539/ibr.v8n9p142.

Fishbein, M., Ajzen, I., & McArdle, J. (1980). Changing the behavior of alcoholics: Effects of persuasive communication. Understanding Attitudes and Predicting Social Behavior, 217-242.

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. Available at: https://doi.org/10.1177/002224378101800104.

Gadabu, A., Sunguh, K., Arkorful, V. E., Uddin, M. M., & Lukman, S. (2019). Examining trust as a key determinant of ehealth adoption in Malawi. Research Square, 1-25. Available at: https://doi.org/10.21203/rs.2.17368/v2.

Garg, P., & Agarwal, D. (2014). Critical success factors for ERP implementation in a Fortis hospital: An empirical investigation. Journal of Enterprise Information Management, 27(4), 402-423. Available at: https://doi.org/10.1108/jeim-06-2012-0027., P., & Agarwal, D. (2014). Critical success factors for ERP implementation in a Fortis hospital: An empirical investigation. Journal of Enterprise Information Management, 27(4), 402-423. Available at: https://doi.org/10.1108/jeim-06-2012-0027.

Gefen, D. (2000). E-commerce: The role of familiarity and trust. Omega, 28(6), 725-737. Available at: https://doi.org/10.1016/s0305-0483(00)00021-9.

Geisser, S. (1974). A predictive approach to the random effect model. Biometrika, 61(1), 101-107. Available at: https://doi.org/10.1093/biomet/61.1.101.

Gerhold, L. (2020). COVID-19: Risk perception and coping strategies.

Grover, S., Dua, D., Sahoo, S., Mehra, A., Nehra, R., & Chakrabarti, S. (2020). Why all COVID-19 hospitals should have mental health professionals: The importance of mental health in a worldwide crisis! Asian Journal of Psychiatry, 51, 102147. Available at: https://doi.org/10.1016/j.ajp.2020.102147.

Gürsel, G., Zayim, N., Gülkesen, K. H., Arifoğlu, A., & Saka, O. (2014). A new approach in the evaluation of hospital information systems. Turkish Journal of Electrical Engineering & Computer Sciences, 22(1), 214-222.

Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., & Thiele, K. O. (2017). Mirror, mirror on the wall: A comparative evaluation of composite-based structural equation modeling methods. Journal of the Academy of Marketing Science, 45(5), 616-632. Available at: https://doi.org/10.1007/s11747-017-0517-x.

Hair Jr, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM). Thousand Okas, CA: Sage Publications.

Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40(3), 414-433. Available at: https://doi.org/10.1007/s11747-011-0261-6.

Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24.

Hair, J. J. F., Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2017). Advanced issues in partial least squares structural equation modeling: Sage Publications.

Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing theory and Practice, 19(2), 139-152. Available at: https://doi.org/10.2753/mtp1069-6679190202.

Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013). Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Planning, 46(1-2), 1-12. Available at: https://doi.org/10.1016/j.lrp.2013.01.001.

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis (Vol. 6). Upper Saddle River. NJ: Pearson Prentice Hall.

Henseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos, A., Straub, D. W., & Calantone, R. J. (2014). Common beliefs and reality about PLS: Comments on Rönkkö and Evermann (2013). Organizational Research Methods, 17(2), 182-209. Available at: https://doi.org/10.1177/1094428114526928.

Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. In New Challenges to International Marketing (Vol. 20, pp. 277-319): Emerald Group Publishing Limited.

Hofstede, J., de Bie, J., Van Wijngaarden, B., & Heijmans, M. (2014). Knowledge, use and attitude toward eHealth among patients with chronic lung diseases. International Journal of Medical Informatics, 83(12), 967-974. Available at: https://doi.org/10.1016/j.ijmedinf.2014.08.011.

Hooper, D., Coughlan, J., & Mullen, M. R. (2008). Structural equation modelling: Guidelines for determining model fit. Electronic Journal of Business Research Methods, 6(1), 53-60.

Hoque, M. R., Bao, Y., & Sorwar, G. (2017). Investigating factors influencing the adoption of e-Health in developing countries: A patient’s perspective. Informatics for Health and Social Care, 42(1), 1-17. Available at: https://doi.org/10.3109/17538157.2015.1075541., M. R., Bao, Y., & Sorwar, G. (2017). Investigating factors influencing the adoption of e-Health in developing countries: A patient’s perspective. Informatics for Health and Social Care, 42(1), 1-17. Available at: https://doi.org/10.3109/17538157.2015.1075541.

Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. Available at: https://doi.org/10.1080/10705519909540118.

Hult, G. T. M., Hair Jr, J. F., Proksch, D., Sarstedt, M., Pinkwart, A., & Ringle, C. M. (2018). Addressing endogeneity in international marketing applications of partial least squares structural equation modeling. Journal of International Marketing, 26(3), 1-21. Available at: https://doi.org/10.1509/jim.17.0151.

Iriani, S. S., & Andjarwati, A. L. (2020). Analysis of perceived usefulness, perceived ease of use, and perceived risk toward online shopping in the era of covid-19 pandemic. Systematic Reviews in Pharmacy, 11(1), 313-320.

Jayasuriya, R. (1998). Determinants of microcomputer technology use: Implications for education and training of health staff. International Journal of Medical Informatics, 50(1-3), 187-194. Available at: https://doi.org/10.1016/s1386-5056(98)00067-7.

Kang, H., & An, S. (2020). Do websites contain factors to aid older adults’ adoption of health-related information and communication technology? Journal of Communication in Healthcare, 13(2), 89-101. Available at: https://doi.org/10.1080/17538068.2020.1761691.

Kapoor, K. K., Dwivedi, Y. K., & Williams, M. D. (2014). Rogers’ innovation adoption attributes: A systematic review and synthesis of existing research. Information Systems Management, 31(1), 74-91. Available at: https://doi.org/10.1080/10580530.2014.854103., K. K., Dwivedi, Y. K., & Williams, M. D. (2014). Rogers’ innovation adoption attributes: A systematic review and synthesis of existing research. Information Systems Management, 31(1), 74-91. Available at: https://doi.org/10.1080/10580530.2014.854103.

Kauer, S., Mangan, C., & Sanci, L. (2014). Do online mental health services improve help-seeking for young people? A systematic review. Journal of Medical Internet Research, 16(3), e66-e66. Available at: https://doi.org/10.2196/jmir.3103.

Kerst, A., Zielasek, J., & Gaebel, W. (2020). Smartphone applications for depression: A systematic literature review and a survey of health care professionals’ attitudes towards their use in clinical practice. European archives of psychiatry and clinical neuroscience, 270(2), 139-152. Available at: https://doi.org/10.1007/s00406-018-0974-3.

Khan, S. U., Liu, X., Khan, I. U., Liu, C., & Rasheed, M. I. (2020). Assessing the investors' acceptance of electronic stock trading in a developing country: The Mediating role of perceived risk dimensions. Information Resources Management Journal (IRMJ), 33(1), 59-82. Available at: https://doi.org/10.4018/irmj.2020010104.

Kim, Y. J., Chun, J. U., & Song, J. (2009). Investigating the role of attitude in technology acceptance from an attitude strength perspective. International Journal of Information Management, 29(1), 67-77. Available at: https://doi.org/10.1016/j.ijinfomgt.2008.01.011.

Kim, N. E., Han, S. S., Yoo, K. H., & Yun, E. K. (2012). The impact of user's perceived ability on online health information acceptance. Telemedicine and e-Health, 18(9), 703-708. Available at: https://doi.org/10.1089/tmj.2011.0277.

King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. Information & Management, 43(6), 740-755. Available at: https://doi.org/10.1016/j.im.2006.05.003.

Lai, L. (2020). Fear and panic can do more harm than the coronavirus, says PM Lee Hsien Loong. The Straits Time. Retrieved from: https://www.straitstimes.com .

Lin, C.-Y. (2020). Social reaction toward the 2019 novel coronavirus (COVID-19). Social Health and Behavior, 3(1), 1-1. Available at: https://doi.org/10.4103/shb.shb_11_20.

Lohmöller, J.-B. (1989). Predictive vs. structural modeling: Pls vs. ml. Latent variable path modeling with partial least squares (pp. 199-226): Springer.

Ma, Q., & Liu, L. (2004). The technology acceptance model: A meta-analysis of empirical findings. Journal of Organizational and End User Computing, 16(1), 59-72. Available at: https://doi.org/10.4018/joeuc.2004010104.

Mead, N., Varnam, R., Rogers, A., & Roland, M. (2003). What predicts patients' interest in the Internet as a health resource in primary care in England? Journal of Health Services Research & Policy, 8(1), 33-39. Available at: https://doi.org/10.1177/135581960300800108.

Mela, C. F., & Kopalle, P. K. (2002). The impact of collinearity on regression analysis: The asymmetric effect of negative and positive correlations. Applied Economics, 34(6), 667-677. Available at: https://doi.org/10.1080/00036840110058482.

Moo, L. R., Gately, M. E., Jafri, Z., & Shirk, S. D. (2020). Home-based video telemedicine for dementia management. Clinical Gerontologist, 43(2), 193-203. Available at: https://doi.org/10.1080/07317115.2019.1655510.

Nand, S., Pitafi, A. H., Kanwal, S., Pitafi, A., & Rasheed, M. I. (2020). Understanding the academic learning of university students using smartphone: Evidence from Pakistan. Journal of Public Affairs, 20(1), e1976. Available at: https://doi.org/10.1002/pa.1976.

Norman, C. D., & Skinner, H. A. (2006). eHEALS: The eHealth literacy scale. Journal of Medical Internet Research, 8(4), e27. Available at: https://doi.org/10.2196/jmir.8.4.e27.

O’Brien, K. M., Hodder, R. K., Wiggers, J., Williams, A., Campbell, E., Wolfenden, L., & Williams, C. M. (2018). Effectiveness of telephone-based interventions for managing osteoarthritis and spinal pain: A systematic review and meta-analysis. Peer J, 6, e5846. Available at: https://doi.org/10.7717/peerj.5846.

Pappa, S., Ntella, V., Giannakas, T., Giannakoulis, V. G., Papoutsi, E., & Katsaounou, P. (2020). Prevalence of depression, anxiety, and insomnia among healthcare workers during the COVID-19 pandemic: A systematic review and meta-analysis. Brain, Behavior, and Immunity, 88(1), 901-907.

Pappot, N., Taarnhøj, G. A., & Pappot, H. (2020). Telemedicine and e-health solutions for COVID-19: patients' perspective. Telemedicine and e-Health, 26(7), 847-849. Available at: https://doi.org/10.1089/tmj.2020.0099.

Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36(4), 717-731. Available at: https://doi.org/10.3758/bf03206553.

Purwanto, E., & Budiman, V. (2020). Applying the technology acceptance model to investigate the intention to use e-health: A conceptual framework. Technology Reports of Kansai University, 62(05), 2569-2580.

Rasheed, M. I., Okumus, F., Weng, Q., Hameed, Z., & Nawaz, M. S. (2020). Career adaptability and employee turnover intentions: The role of perceived career opportunities and orientation to happiness in the hospitality industry. Journal of Hospitality and Tourism Management, 44(3), 98-107. Available at: https://doi.org/10.1016/j.jhtm.2020.05.006.

Rasheed, M. I., Jamad, W. N., Pitafi, A. H., & Iqbal, S. M. J. (2020). Perceived compensation fairness, job design, and employee motivation: The mediating role of working environment. South Asian Journal of Management, 14(2), 229-246.

Rees, C. S., & Maclaine, E. (2015). A systematic review of videoconference-delivered psychological treatment for anxiety disorders. Australian Psychologist, 50(4), 259-264. Available at: https://doi.org/10.1111/ap.12122.

Sarstedt, M., Ringle, C. M., & Hair, J. F. (2017). Partial least squares structural equation modeling. Handbook of Market Research, 26(1), 1-40.

Sarwar, B., Zulfiqar, S., Aziz, S., & Ejaz Chandia, K. (2019). Usage of social media tools for collaborative learning: The effect on learning success with the moderating role of cyberbullying. Journal of Educational Computing Research, 57(1), 246-279. Available at: https://doi.org/10.1177/0735633117748415.

Sattar, M. A., Rasheed, M. I., Khan, I. U., Tariq, H., & Iqbal, J. (2017). Why adaptable individuals perform better: The role of orientation to happiness. Australian Journal of Career Development, 26(3), 134-141. Available at: https://doi.org/10.1177/1038416217724516.

Schepers, J., & Wetzels, M. (2007). A meta-analysis of the technology acceptance model: Investigating subjective norm and moderation effects. Information & Management, 44(1), 90-103. Available at: https://doi.org/10.1016/j.im.2006.10.007.

Shachak, A., Kuziemsky, C., & Petersen, C. (2019). Beyond TAM and UTAUT: Future directions for HIT implementation research. Journal of Biomedical Informatics, 100, 103315. Available at: https://doi.org/10.1016/j.jbi.2019.103315.

Sharifi, M., Ayat, M., Jahanbakhsh, M., Tavakoli, N., Mokhtari, H., & Wan Ismail, W. K. (2013). E-health implementation challenges in Iranian medical centers: A qualitative study in Iran. Telemedicine and e-Health, 19(2), 122-128. Available at: https://doi.org/10.1089/tmj.2012.0071.

Shekelle, P. G., Morton, S. C., & Keeler, E. B. (2006). Costs and benefits of health information technology. Evidence Report Technology Assessment, 2(132), 1-71.

Shigemura, J., Ursano, R. J., Morganstein, J. C., Kurosawa, M., & Benedek, D. M. (2020). Public responses to the novel 2019 coronavirus (2019-nCoV) in Japan: Mental health consequences and target populations. Psychiatry and Clinical Neurosciences, 74(4), 281. Available at: https://doi.org/10.1111/pcn.12988.

Shmueli, G., Sarstedt, M., Hair, J. F., Cheah, J.-H., Ting, H., Vaithilingam, S., & Ringle, C. M. (2019). Predictive model assessment in PLS-SEM: guidelines for using PLSpredict. European Journal of Marketing, 53(11), 2322-2347. Available at: https://doi.org/10.1108/ejm-02-2019-0189., G., Ray, S., Estrada, J. M. V., & Chatla, S. B. (2016). The elephant in the room: Predictive performance of PLS models. Journal of Business Research, 69(10), 4552-4564. Available at: https://doi.org/10.1016/j.jbusres.2016.03.049.

Shmueli, G., Sarstedt, M., Hair, J. F., Cheah, J.-H., Ting, H., Vaithilingam, S., & Ringle, C. M. (2019). Predictive model assessment in PLS-SEM: guidelines for using PLSpredict. European Journal of Marketing, 53(11), 2322-2347. Available at: https://doi.org/10.1108/ejm-02-2019-0189., G., Sarstedt, M., Hair, J. F., Cheah, J.-H., Ting, H., Vaithilingam, S., & Ringle, C. M. (2019). Predictive model assessment in PLS-SEM: guidelines for using PLSpredict. European Journal of Marketing, 53(11), 2322-2347. Available at: https://doi.org/10.1108/ejm-02-2019-0189.

Smith, A. (2020). Nurse suicides rise in Europe amid stress of COVID-19 pandemic. Socialist Website [internet]. Retrieved from: https://www.wsws.org/en/articles/2020/03/31/trez-m31.html . [Accessed: 28 May 2020].

Stone, M. (1974). Cross‐validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society: Series B (Methodological), 36(2), 111-133. Available at: https://doi.org/10.1111/j.2517-6161.1974.tb00994.x.

Suh, B., & Han, I. (2003). The impact of customer trust and perception of security control on the acceptance of electronic commerce. International Journal of Electronic Commerce, 7(3), 135-161. Available at: https://doi.org/10.1080/10864415.2003.11044270.

Sun, N., & Rau, P.-L. P. (2015). The acceptance of personal health devices among patients with chronic conditions. International Journal of Medical Informatics, 84(4), 288-297. Available at: https://doi.org/10.1016/j.ijmedinf.2015.01.002.

Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2007). Using multivariate statistics. Boston, MA: Pearson.

Tao, D., Wang, T., Wang, T., Zhang, T., Zhang, X., & Qu, X. (2020). A systematic review and meta-analysis of user acceptance of consumer-oriented health information technologies. Computers in Human Behavior, 104, 106147. Available at: https://doi.org/10.1016/j.chb.2019.09.023.

Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144-176. Available at: https://doi.org/10.1287/isre.6.2.144.

Tebeje, T. H., & Klein, J. (2020). Applications of e-health to support Person-centered health care at the time of COVID-19 pandemic. Telemedicine and e-Health, 27(2), 150-158. Available at: https://doi.org/10.1089/tmj.2020.0201.

Torniainen-Holm, M., Pankakoski, M., Lehto, T., Saarelma, O., Mustonen, P., Joutsenniemi, K., & Suvisaari, J. (2016). The effectiveness of email-based exercises in promoting psychological wellbeing and healthy lifestyle: A two-year follow-up study. BMC Psychology, 4(1), 1-12. Available at: https://doi.org/10.1186/s40359-016-0125-4.

Turgoose, D., Ashwick, R., & Murphy, D. (2018). Systematic review of lessons learned from delivering tele-therapy to veterans with post-traumatic stress disorder. Journal of Telemedicine and Telecare, 24(9), 575-585. Available at: https://doi.org/10.1177/1357633x17730443.

Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342-365. Available at: https://doi.org/10.1287/isre.11.4.342.11872.

Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. Available at: https://doi.org/10.1287/mnsc.46.2.186.11926.

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly: Management Information Systems, 27(3), 425-478. Available at: https://doi.org/10.2307/30036540.

Venkatesh, V., Thong, J. Y., & Xu, X. (2016). Unified theory of acceptance and use of technology: A synthesis and the road ahead. Journal of the Association for Information Systems, 17(5), 328-376. Available at: https://doi.org/10.17705/1jais.00428.

Vermeiren, C., Marchand-Senécal, X., Sheldrake, E., Bulir, D., Smieja, M., Chong, S., & Katz, K. (2020). Comparison of Copan ESwab and FLOQSwab for COVID-19 diagnosis: Working around a supply shortage. Journal of Clinical Microbiology, 58(6), e00669-00620. Available at: https://doi.org/10.1128/jcm.00669-20.

Wilson, E. V., & Lankton, N. K. (2009). Predicting patients' use of provider-delivered e-health: The role of facilitating conditions. In Patient-centered e-health (pp. 217-229): IGI Global.

Wind, T., Rijkeboer, M., Andersson, G., & Riper, H. (2020). The COVID-19 pandemic: The'black swan'for mental health care and a turning point for e-health. Internet Interventions, 20, 100317. Available at: https://doi.org/10.1016/j.invent.2020.100317.

Wu, J.-H., Wang, S.-C., & Lin, L.-M. (2007). Mobile computing acceptance factors in the healthcare industry: A structural equation model. International Journal of Medical Informatics, 76(1), 66-77. Available at: https://doi.org/10.1016/j.ijmedinf.2006.06.006.

Xiang, Y.-T., Yang, Y., Li, W., Zhang, L., Zhang, Q., Cheung, T., & Ng, C. H. (2020). Timely mental health care for the 2019 novel coronavirus outbreak is urgently needed. The Lancet Psychiatry, 7(3), 228-229. Available at: https://doi.org/10.1016/s2215-0366(20)30046-8.

Yang, H.-d., & Yoo, Y. (2004). It's all about attitude: Revisiting the technology acceptance model. Decision Support Systems, 38(1), 19-31. Available at: https://doi.org/10.1016/s0167-9236(03)00062-9.

Yarbrough, A. K., & Smith, T. B. (2007). Technology acceptance among physicians: A new take on TAM. Medical Care Research and Review, 64(6), 650-672. Available at: https://doi.org/10.1177/1077558707305942.

Yousaf, S., Rasheed, M. I., Hameed, Z., & Luqman, A. (2019). Occupational stress and its outcomes: The role of work-social support in the hospitality industry. Personnel Review, 49(3), 755-773.

Yu, C.-S. (2012). Factors affecting individuals to adopt mobile banking: Empirical evidence from the UTAUT model. Journal of Electronic Commerce Research, 13(2), 104-121.

Zachrison, K. S., Boggs, K. M., Hayden, E. M., Espinola, J. A., & Camargo Jr, C. A. (2020). Understanding barriers to telemedicine implementation in rural emergency departments. Annals of Emergency Medicine, 75(3), 392-399. Available at: https://doi.org/10.1016/j.annemergmed.2019.06.026.

Zayyad, M. A., & Toycan, M. (2018). Factors affecting sustainable adoption of e-health technology in developing countries: An exploratory survey of Nigerian hospitals from the perspective of healthcare professionals. Peer Journal, 6, e4436. Available at: https://doi.org/10.7717/peerj.4436.

Zhang, Y., Rasheed, M. I., & Luqman, A. (2019). Work–family conflict and turnover intentions among Chinese nurses: The combined role of job and life satisfaction and perceived supervisor support. Personnel Review, 49(5), 1140-1156. Available at: https://doi.org/10.1108/pr-01-2019-0017.

Zhang, J., Wu, W., Zhao, X., & Zhang, W. (2020). Recommended psychological crisis intervention response to the 2019 novel coronavirus pneumonia outbreak in China: A model of West China Hospital. Precision Clinical Medicine, 3(1), 3-8. Available at: https://doi.org/10.1093/pcmedi/pbaa006.

Zhang, Y., Wu, S., & Rasheed, M. I. (2020). Conscientiousness and smartphone recycling intention: The moderating effect of risk perception. Waste Management, 101(1), 116-125. Available at: https://doi.org/10.1016/j.wasman.2019.09.040.

Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., & Huang, C.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270-273. Available at: https://doi.org/10.1038/s41586-020-2012-7.

Zhou, X., Snoswell, C. L., Harding, L. E., Bambling, M., Edirippulige, S., Bai, X., & Smith, A. C. (2020). The role of telehealth in reducing the mental health burden from COVID-19. Telemedicine and e-Health, 26(4), 377-379. Available at: https://doi.org/10.1089/tmj.2020.0068.

Zobair, K. M., Sanzogni, L., & Sandhu, K. (2019). Expectations of telemedicine health service adoption in rural Bangladesh. Social Science & Medicine, 238, 112485. Available at: https://doi.org/10.1016/j.socscimed.2019.112485.

Statistics:

Google Scholor ideas Microsoft Academic Search bing Google Scholor

Funding:

This study received no specific financial support.

Competing Interests:

The authors declare that they have no competing interests.

Acknowledgement:

All authors contributed equally to the conception and design of the study.

Related Article

( 1 ) Fear of Covid-19 and Intentions towards Adopting E-Health Services: Exploring the Technology Acceptance Model in the Scenario of Pandemic
( 2 ) Accountability and Transparency in Nation Building: A COVID-19 Experience in Sub-Saharan Africa
( 3 ) The Impact of Covid-19 Pandemic on the Global Economy: Emphasis on Poverty Alleviation and Economic Growth
( 4 ) The Effects of The Covid-19 Pandemic on Exploitative and Explorative Strategies of Pharmaceutical Industries in Brazil
( 6 ) Facing the Challenges of Covid-19 in the Egyptian Banking Sector: The Role of Bricoleurs in Achieving Organizational Innovations via Learning through Improvisation
( 7 ) Human Research Management: Effect of Covid-19 On Workers in the UK Who Have Previously Lost One or Both Arms
( 9 ) An Enquiry into the Contributions of Microfinance Institutions Towards the Development of Small Scale Business in Nigeria
( 10 ) Quality Management Practices towards Customer Satisfaction in Local Authority Public Services Website
( 11 ) Managing Public Perception towards Local Government Administration
( 12 ) A Factor Analysis Approach Towards a Study of the Factors Affecting Students’ Choice of Higher Education Institution: A Case Study of a Private Institution (Twintech International University College of Technology)
( 13 ) The Importance of Public Administration Towards Achieving Good Governance for Positive National Development by Using SmartPLS 3
( 14 ) Conceptualisation of Lack of Discipline and Probity as the Main Cause towards Good Governance Practice
( 15 ) Assessing the Perceived Value of Customers for being Satisfied towards the Sustainability of Hypermarket in Malaysia
( 16 ) Effect of Brand Enhancement on Buying Behavior towards the Sport Sponsorship Companies in Riyadh, KSA
( 17 ) Self-Efficacy and Entrepreneurial Mindset: Towards Societal Re-Engineering
( 18 ) Developing a Conceptual Model for Antecedents of Resistance to Change towards Sustainable Construction Practices
( 19 ) Towards a Proposal of a Local Authority Model Based on the Systemic Approach
( 20 ) A Process Model for Conformance of Health Information Systems: Towards National Interoperability
( 21 ) What Explains the Overwhelmingly Positive Perception towards Microfinance Institutions? Application of Firth’s Logistic Regression in a Small Sample
( 22 ) Analysis of Demographic Factors on Perceptions of Inventory Managers towards Healthcare Performance
( 24 ) Economic and Noneconomic Forces on Remittance Receiving: A Panel Analysis of Top Remittance Sending Countries towards Bangladesh
( 28 ) The Wider Vision of Social Policy: Exploring the Ways of Curbing Violence against Women in Four Wards of Shamva North Constituency (Zimbabwe)
( 29 ) Exploring the Asymmetric Linkage between Commodity Prices and Fiscal Performance in Nigeria
( 30 ) Exploring the Dimensions Using Exploratory Factor Analysis of Disruptive Factors and Inventory Control
( 31 ) Exploring the Linkages between Remittances, Economic Growth and Poverty: Empirical Evidence from Pakistan
( 33 ) Consideration the Relationship Between Information Communications Technology and Economic Growth in Top 10 Economic
( 34 ) Strategic Evaluation of Distributed Power Generation Technology: A Sustainable Approach
( 35 ) The Role of Information and Communication Technology in Rural Socio-Economic Development in Africa
( 36 ) The Influence of Information Technology and Communication Supply Chain Management Performance for Greater SME Manufacturing in Aguascalientes
( 37 ) An Assessment of the Impact of Information Communication Technology (ICT) On the Administration of Public Records: A Case Study of the Bolgatanga Municipal Assembly in the Upper East Region of Ghana-West Africa
( 38 ) Dynamic Analysis of Competitive Technology Innovation Diffusion Model
( 39 ) Academic Mobility for Engineering and Technology Graduates in Africa: Lessons and Experiences from the Implementation
( 40 ) A Review of Cross Border Higher Education in Africa: Focus on Graduate Level Training in Engineering and Technology
( 42 ) Consumers’ Behavioural Intention to Adopt Mobile Banking in Rural Sub-Saharan Africa Using an Extension of Technology Acceptance Model: Lessons from Zimbabwe
( 43 ) The Impact of Merger and Acquisition on the Financial Performance of the Nasdaq Listed Small Size Technology Companies
( 44 ) The Impact of Fundamental Factors on the Share Price of Micro-Sized Nasdaq Listed Technology Companies
( 48 ) The Development of Participated Environmental Education Model for Sustainable Mangrove Forest Management on Eastern Part of Thailand
( 49 ) The Impact of Human Capital on Economic Growth: Evidence from Tunisia Using Star and Stecm Models
( 50 ) An Inventory Model with Lost Sale is Time Dependent
( 51 ) A Model of Strategic Thinking: Islamic and Iranian Perspective
( 52 ) Stock Market Performance and Economic Growth: Evidence from Nigeria Employing Vector Error Correction Model Framework
( 53 ) Workplace Bullying: Modelling Construct Validity in an Australian Public Sector Workforce
( 54 ) Estimating Value at Risk for Sukuk Market Using Generalized Auto Regressive Conditional Heteroskedasticity Models
( 56 ) A Review upon the Changes Which Come With the Model upon Turkish Metropolitan Municipality within the Provincial Administrative Boundaries
( 57 ) Confirming the Mediation Effect of A Structural Model By Using Bootstrap Approach: A Case Study of Malaysian 8th Grade Students’ Mathematics Achievement
( 58 ) The Effect of Exchange Rate Changes on Consumer Prices in Nigeria: Evidence from VECM Model
( 59 ) Examining Long Run Relationship between Household Debt and Household Savings in South Africa – An Error Correction Model and Granger Causality
( 60 ) Comparative Analysis of the Effectiveness of Coub-Douglas, Real Business Cycle, and Keynsian Growth Models in Determining Economic Growth in Nigeria
( 61 ) An Econometric Planning Model of Urban Forestry as a Measure of Sustainability: A Matrix of Action and Change