Review of Plant Studies

Published by: Conscientia Beam
Online ISSN: 2410-2970
Print ISSN: 2412-365X
Quick Submission    Login/Submit/Track

No. 1

Review: Plant Resistance to Agriculture Insect Pests

Pages: 10-25
Find References

Finding References


Review: Plant Resistance to Agriculture Insect Pests

Search :
Google Scholor
Search :
Microsoft Academic Search
Cite

DOI: 10.18488/journal.69/2014.1.1/69.1.10.25

Sawsan Sabry Moawad

Export to    BibTeX   |   EndNote   |   RIS

  1. R. H. Painter, Insect resistance in crop plants. New York: MacMillan, 1951.
  2. S. D. Beck, "Resistance of plants to insects," Ann. Rev. Ent., vol. 10, pp. 207-232, 1965.
  3. J. R. Dogoer and C. H. Hanson, "Reaction of alfalfa varieties and strains to alfalfa weevil," J. Econ. Entomol., vol. 56, pp. 19-27, 1963.
  4. H. Doggett, K. J. Arks, and A. Eberharts, "Breeding for resistance to the sorghum shoot fly," Crop Sci., vol. 10, pp. 528-531, 1970.
  5. K. J. Frey, "Improving crop yields through plant breeding," Am. Soc. Agron. Spec. Publ., vol. 20, pp. 15–58, 1971.
  6. D. N. Duvick, "Plant breeding: Past achievements and expectations for the future," Econ. Bot., vol. 40, pp. 289–297, 1986.
  7. D. Charles and B. Wilcox, Lords of the harvest: Biotechnology, big money and the future of food. Cambridge, MA: Perseus Publishing, 2002.
  8. G. Acquaah, Principal of plant genetics and breeding: Black Well Publisher, 2007.
  9. O. E. Krips, P. E. L. Willems, and M. Dicke, "Compatibility of host plant resistance and biological control of the two-spotted spider mite tetranychus urticaein the ornamental crop gerbera," Biol. Cont., vol. 16, pp. 155-163, 1999.
  10. S. D. Eigenbrode and N. N. Kabalo, "Effects of brassica oleracea wax blooms on predation and attachment by hippodamia convergens," Entomol. Exp. Appl., vol. 91, pp. 125-130, 1999.
  11. A. A. Agrawal, R. Karban, and R. Colfer, "How leaf domatia and induced resistance affect herbivores, natural enemies and plant performance?," Oikos, vol. 89, pp. 70-80, 2000.
  12. A. A. Agrawal, "Induced responses to herbivory and increased plan performance," Science, vol. 279, pp. 1201-1202, 1998.
  13. J. A. Gatehouse, "Plant resistance towards insect herbivores: A dynamic interaction," New Phytologist, vol. 156, pp. 145–169, 2002.
  14. J. S. Thaler, "Jasmonate-inducible plant defenses cause increased parasitism of herbivores. Mechanisms of induced defenses to ecological interactions in the field," Nature, vol. 399, pp. 686-688, 1999.
  15. A. A. Agrawal, S. Tuzun, and E. Bent, Induced plant defenses against pathogens and herbivores: Biochemistry, ecology, and agriculture. St. Paul, Minnesota: American Phytopathological Society Press, 1999.
  16. N. W. Widstrom and M. E. Snook, "Registration of EPM6 and SIM6 maize germplasm, high silk-maysin sources of resistance to corn earworm," Crop Sci., vol. 41, pp. 2009–2010, 2001.
  17. P. F. Byrne, M. D. McMullen, M. E. Snook, T. A. Musket, J. M. Theuri, N. W. Widstrom, B. R. Wiseman, and E. H. Coe, "Quantitative trait loci and metabolic pathways: Genetic control of the concentration of maysin, a corn earworm resistance factor, in maize silks," in Proc. Natl. Acad. Sci, USA, 1996, pp. 8820–8825.
  18. B. Z. Guo, N. W. Widstrom, B. R. Wiseman, M. E. Snook, R. E. Lynch, and D. Plaisted, "Comparison of silk maysin, antibiosis to corn earworm larvae (Lepidoptera: Noctuidae), and silk browning in crosses of dent × sweet corn," J. Econ. Entomol., vol. 92, pp. 746–753, 1999.
  19. B. R. Wiseman and J. E. Carpenter, "Growth inhibition of corn earworm (Lepidoptera: Noctuidae) larvae reared on resistant corn silk diets," J. Econ. Entomol., vol. 88, pp. 1037–1043, 1995.
  20. P. F. Byrne, M. D. McMullen, B. R. Wiseman, M. E. Snook, T. A. Musket, J. M. Theuri, N. W. Widstrom, and E. H. Coe, "Maize silk maysin concentration and corn earworm antibiosis: QTLs and genetic mechanisms," Crop Sci., vol. 38, pp. 461–471, 1998.
  21. M. D. McMullen, M. E. Snook, E. A. Lee, P. F. Byrne, H. Kross, T. A. Musket, K. Houchins, and E. H. Coe, "The biological basis of epistasis between quantitative trait loci for flavones and 3-deoxyanthocyanin synthesis in maize (Zea Mays L)," Genome, vol. 44, pp. 667–676, 2001.
  22. E. A. Lee, P. F. Byrne, M. D. McMullen, M. E. Snook, B. R. Wiseman, N. W. Widstrom, and E. H. Coe, "Genetic mechanisms underlying apimaysin and maysin synthesis and corn earworm antibiosis in maize (Zea Mays L)," Genet., vol. 149, pp. 1997–2006, 1998.
  23. B. Z. Guo, Z. J. Zhang, A. Butr ´on, N. W. Widstrom, M. E. Snook, R. E. Lynch, and D. Plaisted, "Quantitative effects of loci p1 and a1 on the concentrations of maysin, apimaysin, methoxymaysin, and chlorogenic acid in maize silk tissue," Maize Genet. Newslett., vol. 75, pp. 64–66, 2001a.
  24. B. Z. Guo, Z. J. Zhang, R. G. Li, N. W. Widstrom, M. E. Snook, R. E. Lynch, and D. Plaisted, "Restriction fragment length polymorphism markers associated with silk maysin, antibiosis to corn earworm (Lepidoptera: Noctuidae) larvae, in a dent and sweet corn cross," J. Econ. Entomol., vol. 94, pp. 564–571, 2001b.
  25. A. Butr´on, B. Z. Guo, N. W. Widstrom, M. E. Snook, and R. E. Lynch, "Use of markers for maize silk antibiotic polyphenol compounds to improve resistance to corn earworm," Recent Res. Devel Agric. Food Chem., vol. 4, pp. 193–201, 2000.
  26. A. Butr´on, R. G. Li, B. Z. Guo, N. W. Widstrom, M. E. Snook, T. E. Cleveland, L. S. Boiteux, J. G. Belter, P. A. Roberts, and P. W. Simon, "Molecular markers to increase corn earworm resistance in a maize population," Maydica, vol. 46, pp. 117–124, 2001.
  27. W. P. Williams, F. M. Davis, and G. E. Scott, "Resistance of corn to leaf-feeding damage by the fall armyworm," Crop Sci., vol. 18, pp. 861–863, 1978.
  28. G. E. Scott and F. M. Davis, "Registration of MpSWCB-4 population of maize," Crop Sci., vol. 21, p. 148, 1981.
  29. W. P. Williams, P. M. Buckley, J. B. Sagers, and J. A. Hanten, "Evaluation of transgenic corn for resistance to corn earworm (Lepidoptera: Noctuidae), fall armyworm (Lepidoptera: Noctuidae), and Southwestern corn borer (Lepidoptera: Crambidae) in a laboratory bioassay," J. Agric. Entomol., vol. 15, pp. 105–112, 1998a.
  30. W. P. Williams, F. M. Davis, P. M. Buckley, P. A. Hedin, G. T. Baker, and D. S. Luthe, "Factors associated with resistance to fall armyworm (Lepidoptera: Noctuidae) and Southwestern corn borer (Lepidoptera: Crambidae) in corn at different vegetable stages," J. Econ. Entomol., vol. 91, pp. 1471–1480, 1998b.
  31. T. Pechan, L. L. Ye, Y. M. Chang, A. Mitra, L. Lin, F. M. Davis, W. P. Williams, D. S. Luthe, and A. Unique, "33-kD cysteine proteinase accumulates in response to larval feeding in maize genotypes resistant to fall armyworm and other lepidoptera," Plant Cell, vol. 12, pp. 1031–1040, 2000.
  32. B. D. Barry, B. R. Wiseman, F. M. Davis, J. A. Mihm, and J. L. Overman, Benefits of insect-resistant maize. Pp.59-85. In B.R. Wiseman and J.A. Webster (Eds.). Economic, environmental, and social benefits of resistance in field crops: Thomas Say Publications, 1999.
  33. W. D. Guthrie and F. F. Dicke, "Resistance of inbred lines of dent corn to leaf feeding by first-brood European corn borers," IWA State J. Sci., vol. 46, pp. 339–357, 1972.
  34. J. A. Klun and T. A. Brindley, "Role of 6-methoxybenzoxazolinone in inbred resistance of host plant (Maize) to first brood larvae of the European corn borer," J. Econ. Entomol., vol. 59, pp. 711–7182, 1966.
  35. C. A. Abel, M. A. Berhow, R. L. Wilson, B. F. Binder, and B. E. Hibbard, "Evaluation of conventional resistance to European corn borer (Lepidoptera: Crambidae) and Western corn rootworm (Coleoptera: Chrysomelidae) in experimental maize lines developed from a backcross breeding program," J. Econ. Entomol., vol. 93, pp. 1814–1821, 2000a.
  36. C. A. Abel, L. M. Pollack, W. Salhuana, M. P. Widrechner, and R. L. Wilson, "Registration of GEMS-0001 maize germplasm resistant to leaf blade, leaf sheath, and collar feeding by European corn borer," Crop Sci., vol. 41, pp. 1651–1652, 2001.
  37. C. A. Abel and R. L. Wilson, "Evaluation of 11 maize populations from Peru for mechanisms of resistance to leaf feeding by the European corn borer," J. K.S. Entomol. Soc., vol. 72, pp. 149–159, 1999.
  38. C. A. Abel, R. L. Wilson, B. R. Wiseman, W. H. White, and F. M. Davis, "Conventional resistance of experimental maize lines to corn earworm (Lepidoptera: Noctuidae), fall armyworm (Lepidoptera: Noctuidae), South Western corn borer (Lepidoptera: Crambidae), and sugarcane borer (Lepidoptera: Crambidae)," J. Econ. Entomol., vol. 93, pp. 982–988, 2000b.
  39. R. L. Wilson, C. A. Abel, B. R. Wiseman, F. M. Davis, W. P. Williams, B. D. Barry, and W. H. White, "Evaluation for multiple pest resistance in European corn borer, ostrinia nubilalis, resistant maize accessions from Peru," J. K.S. Entomol. Soc., vol. 68, pp. 326–331, 1995.
  40. F. H. Franca, G. L. Villas Boas, M. CasteloBranco, M. A. Medeiros, D. P. ManejoIntegrado, and J. B. C. Silva, Tomate para process amento industrial. Brasília: Embrapa Comunicação Para Transferência de Tecnologia; Embrapa Hortaliças, 2000.
  41. F. M. Michereff and E. F. Vilela, Traca do tomateiro, Tuta absoluta (Lepidoptera: Gelechiidae). Pp.81 84. In: Vilela, E.F.; Zucchi, R.A. and Cantor, F. (Ed.). Histórico e impacto das pragasintroduzidas no Brasil. Ribeirão Preto: Holos, 2001.
  42. M. Fancelli, J. D. Vendramim, R. T. S. Frighetto, M. Fancelli, J. D. Vendramin, and A. L. Lourencao, "Oviposição e dispersão de ninfas de bemisiatabacibiótipo B emgenótipos de tomateiro," Bragantia, vol. 67, p. 933 939, 2008.
  43. A. C. Antônio, D. H. Silva, M. C. Picanço, N. Santos, and M. Fernandes, "Tomato plant inheritance of antixenotic resistance to tomato leaf miner," Pesq. Agropec. Bras., Brasília, vol. 46, pp. 74-80, 2011.
  44. D. R. Porter, D. W. Mornhinweg, and J. A. Webster, Insect resistance in barley germplasm. Pp. 51–60. In: Clement, S. and Quisenberry, S. (Eds.). Global plant genetic resources forinsect-resistant crops. Boca Raton, FL: CRC Press, 1998.
  45. D. R. Porter and J. A. Webster, "Russian wheat aphid-induced protein alterations in spring wheat," Euphytica, vol. 111, pp. 199–203, 2000.
  46. J. A. Webster, D. R. Porter, J. D. Burd, and D. W. Mornhinweg, "Effects of growth stage of resistant and susceptible barley on the Russian wheat aphid, diuraphisnoxia (Homoptera: Aphididae)," J. Agric. Entomol., vol. 13, pp. 283–291, 1996.
  47. D. W. Mornhinweg, D. R. Porter, and J. A. Webster, "Registration of STARS-9577B Russian wheat aphid resistant barley germplasm," Crop Sci., vol. 39, p. 883, 1999.
  48. J. A. Webster and D. R. Porter, "Reaction of four aphid species on a Russian wheat aphid resistant wheat," Southwest Entomol., vol. 25, pp. 83–90, 2000a.
  49. D. B. Hays, D. R. Porter, J. A. Webster, and B. F. Carver, "Feeding behavior of biotypes E and H green bug (Homoptera: Aphididae) on previously infested near-isolines of barley," J. Econ. Entomol., vol. 92, pp. 1223–1229, 1999.
  50. J. A. Webster and D. R. Porter, "Plant resistance components of two greenbug (Homoptera: Aphididae) resistant wheats," J. Econ. Entomol., vol. 93, pp. 1000–1004, 2000b.
  51. D. R. Porter, J. D. Burd, K. A. Shufran, J. A. Webster, and G. L. Teetes, "Green bug (Homoptera: Aphididae) biotypes: Selected by resistant cultivars or preadapted opportunists?," J. Econ. Entomol., vol. 90, pp. 1055–1065, 1997.
  52. E. E. Sebesta, E. A. Wood, D. R. Porter, J. A. Webster, and E. L. Smith, "Registration of Amigo wheat germplasm resistant to green bug," Crop Sci., vol. 34, p. 293, 1994.
  53. D. R. Porter, J. A. Webster, and B. Friebe, "Inheritance of green bug biotype G resistance in wheat," Crop Sci., vol. 34, pp. 625–628, 1994.
  54. D. R. Porter, J. D. Burd, K. A. Shufran, and J. A. Webster, "Efficacy of pyramiding green bug (Homoptera: Aphididae) resistance genes in wheat," J. Econ. Entomol., vol. 93, pp. 1315–1318, 2000.
  55. J. Dubcovsky, A. J. Lukaszewski, M. Echaide, E. F. Antonelli, and D. R. Porter, "Molecular characterization of two triticums peltoides interstitial translocations carrying leaf rust and green bug resistance genes," Crop Sci., vol. 38, pp. 1655–1660, 1998.
  56. P. J. Zhang, S. Zheng, J. J.A., V. Loon, W. Boland, A. David, M. Roland, and M. Dicke, "Whiteflies interfere with indirect plant defense against spider mites in lima bean," PNAS, vol. 106, pp. 21202–21207, 2009.
  57. H. R. S. Moayeri, A. Ashouri, L. Poll, and A. Enkegaard, "Olfactory response of a predatory mirid to herbivore induced plant volatiles: Multiple herbivory vs. single herbivory," J. Appl. Entomol., vol. 131, pp. 326–332, 2007.
  58. C. Rodriguez-Saona, S. J. Crafts-Brandner, and L. A. Canas, "Volatile emissions triggered by multiple herbivore damage: Beet armyworm and whitefly feeding on cotton plants," J. Chem. Ecol., vol. 29, pp. 2539–2550, 2003.
  59. C. Rodriguez-Saona, J. A. Chalmers, S. Raj, and J. S. Thaler, "Induced plant responses to multiple damagers: Differential effects on an herbivore and its parasitoid," Oecologia, vol. 143, pp. 566–577, 2005.
  60. C. James, "Global review of commercialized transgenic crops." Available: http://www.isaaa.org/publications/briefs/Brief 24, 2002.
  61. J. E. Carpenter and L. P. Gianessi, "Agricultural biotechnology: Updated benefit estimates." Available: http://www.ncfap.org/reports/biotech/updatedbenefits, 2001.
  62. EPA, "Biopesticide registration action document: Bacillus thuringiensisplant-incorporated protectant." Available: http://www.epa.gov/pesticides/biopesticides/reds/bradbtpip2.htm, 2001.
  63. J. N. Jenkins, W. L. Parrott, J. J. C. McCarty, F. E. Callahan, S. A. Berberich, and W. R. Deaton, "Growth and survival of Heliothisvirescens (Lepidoptera: Noctuidae) on transgenic cotton containing a truncated form of the delta endotoxin gene from bacillus thuringiensis," J. Econ. Entomol., vol. 86, pp. 181–185, 1993.
  64. S. D. Stewart, J. J. J. Adamczyk, K. S. Knighten, and F. M. Davis, "Impact of Bt cottons expressing one or two insecticidal proteins of bacillus thuringiensis berliner on growth and survival of noctuidea (Lepidoptera) larvae," J. Econ. Entomol., vol. 94, pp. 752–760, 2001.
  65. J. Gore, B. R. Leonard, and J. J. Adamczyk, "Bollworm (Lepidoptera: Noctuidae) survival on ‘bollgard’ and ‘bollgardII’cotton flower bud and flower components," J. Econ. Entomol., vol. 94, pp. 1445–1451, 2001.
  66. W. P. Williams, J. B. Sagers, J. A. Hanten, F. M. Davis, and P. M. Buckley, "Transgenic corn evaluated for resistance to fall armyworm and South Western corn borer," Crop Sci., vol. 37, pp. 957–962, 1997.
  67. W. P. Williams, F. M. Davis, P. M. Buckley, P. A. Hedin, G. T. Baker, and D. S. Luthe, "Factors associated with resistance to fall armyworm (Lepidoptera: Noctuidae) and South Western corn borer (Lepidoptera: Crambidae) in corn at different vegetable stages," J. Econ. Entomol., vol. 91, pp. 1471–1480, 1998b.
  68. W. P. Williams, F. M. Davis, J. L. Overman, and P. M. Buckley, "Enhancing inherent fall armyworm (Lepidoptera: Noctuidae) resistance of corn with bacillus thuringiensis genes," FL. Entomol., vol. 82, pp. 271–277, 1999.
  69. R. E. Lynch, B. R. Wiseman, D. Plaisted, and D. Warnick, "Evaluation of transgenic sweet corn hybrids expressing CryIA(b) toxin for resistance to corn earworm and fall armyworm (Lepidoptera: Noctuidae)," J. Econ. Entomol., vol. 92, pp. 246–252, 1999a.
  70. R. E. Lynch, B. R. Wiseman, H. R. Sumner, D. Plaisted, and D. Warnick, "Management of corn earworm and fall armyworm (Lepidoptera: Noctuidae) injury on a sweet corn hybrid expressing a cryIA(b) gene," J. Econ. Ent Omol., vol. 92, pp. 1217–1222, 1999b.
  71. G. L. Windham, W. P. Williams, and F. M. Davis, "Effects of the Southwestern corn borer on Aspergillusflavuskernel infection and aflatoxin accumulation in maize hybrids," Plant Dis., vol. 83, pp. 535–540, 1999.
  72. G. P. Munkvold, R. L. Hellmich, and W. B. Showers, "Reduced fusarium ear rot and symptomless infection in kernels of maize genetically engineered for European corn borer resistance," Phytopath, vol. 87, pp. 1071–1077, 1997.
  73. G. P. Munkvold, R. L. Hellmich, and L. G. Rice, "Comparison of fumonisin concentrations in kernels of transgenic Bt maize hybrids and non-transgenic hybrids," Plant Dis., vol. 83, pp. 130–138, 1999.
  74. P. F. Dowd, "Biotic and abiotic factors limiting efficacy of Bt corn in indirectly reducing mycotoxin levels in commercial fields," J. Econ. Entomol., vol. 94, pp. 1067–1074, 2001.
  75. R. L. Hellmich, B. D. Siegfried, M. K. Sears, D. E. Stanley-Horn, M. J. Daniels, H. R. Mattila, T. Spencer, K. G. Bidne, and L. C. Lewis, "Monarch larvae sensitivity to bacillus thuringiensis- purified proteins and pollen," in Proc. Natl. Acad. Sci., USA, 2001, pp. 11925–11930.
  76. J. M. Pleasants, R. L. Hellmich, G. P. Dively, M. K. Sears, D. E. Stanley- Horn, D. R. Porter, and J. A. Webster, "Corn pollen deposition on milkweed in and near cornfields," in Proc. Natl. Acad. Sci., USA, 2001, pp. 11919–11924.
  77. M. K. Sears, R. L. Hellmich, D. E. Stanley-Horn, K. S. Oberhauser, J. M. Pleasants, H. R. Mattila, B. D. Siegfried, and G. P. Dively, "Impact of Bt pollen on monarch butterfly populations: A risk assessment," in Proc. Natl. Acad. Sci., USA, 2001, pp. 11937–11942.
  78. F. Huang, B. R. Leonard, and R. H. Gable, "Comparative susceptibility of European corn borer, Southwestern corn borer, and sugarcane borer (Lepidoptera: Crambidae) to cry1Ab protein in a commercial bacillus thuringiensiscorn hybrid," J. Econ. Entomol., vol. 99, pp. 194-202, 2006.
  79. M. M. Saker, H. S. Salama, M. Salama, A. El-Banna, and N. M. Abdel-Ghany, "Production of transgenic tomato plants expressing Cry 2Ab gene for the control of some lepidopterous insects endemic in Egypt," J. Genet. Eng. and Biotech., vol. 9, pp. 149-155, 2011.
  80. E. A. El-Shazly, I. A. Ismail, H. A. El Shabrawy, A. S. H. Abdel-Moniem, and R. S. Abdel-Rahman, "Transgenic maize hybrids as a tool to control Sesamia cretica led. Compared by conventional method of control on normal hybrids," Archives of Phytopathology and Plant Protection, vol. 46, pp. 2304-2313, 2013.
No any video found for this article.
Sawsan Sabry Moawad (2014). Review: Plant Resistance to Agriculture Insect Pests. Review of Plant Studies, 1(1): 10-25. DOI: 10.18488/journal.69/2014.1.1/69.1.10.25
 Competition and interaction among organisms in nature results to selection for traits which confer added advantage. As a result of such interactions between plants and their natural enemies, plants have developed defensive mechanisms, both chemical and physical, to minimize pest damage. 
Intensive researches were carried out to identify and isolation the gene responsible for resistance plant to insects’ infestation which is used in breeding programs for crops improvement. It can be summarized as follows: 
1-  Corn ear worm, Helicoverpa zea (Boddie) can’t cause damage to certain corn strain due to maysin, a C-glycosyl flavone, and related compounds in the silks that inhibit corn earworm larval growth. Scientist can identify corn chromosome regions associated with silk maysin concentration, and then used it in producing new hybrid.
2- Other insect such as the fall army worm, Spodoptera frugiperda can’t cause damage to resistance corn due to some factors as high hemicelluloses content, low protein content and leaf toughness. They can also identify a gene code which is controlled by the resistance traits of corn to the fall army worm. 
3- However, the European corn borer, Ostrinia nubilalis (Hubner) can’t cause damage to certain corn varieties due to high concentrations of 2,4-dihydroxy-7- methoxy-1,4-benzoxazin-3-one (DIMBOA) in the leaves of mid-whorl stage plants. Scientist indicated that resistance to the European corn borer was identified in Peruvian corn germplasm and the GEM (Germplasm Enhancement of Maize) corn collection, then make backcross to produce new resistance strain. 
4- Other crops as tomato infested by Tuta absoluta  (Meyrick ( but some tomato varieties as Lycopersicon esculentum can resist it due to antixenosis factor which interrupted tomato leaf miner from feed, oviposition and shelter . 
5- Russian wheat aphid, Diuraphis noxia (Mordvilko), can’t cause damage to some wheat and barley and others crop due to antibiosis and antixenosis factors. Six sources of resistant wheat, each governed by a different, single gene, have been identified.
6- Two-spotted spider mites, Tetranychus urticae (Acari: Tetranychidae) and Whiteflies, Bemisia tabaci (Hemiptera: Aleyrodidae) are herbivorous pests. Additional whitefly infestation to spider-mite infested plants resulted in a reduced attraction of predatory mites (Phytoseiulus persimilis). This interference was shown to result from the reduction in (E)-β-ocimene emission from plantsinfested by both spider mites and whiteflies.
7- Transgenic crops expressing a protein from the bacterium Bacillus thuringiensis Berliner (Bt) were carried out into potato, maize, cotton and soybean to be reduced their insect infestation.

Contribution/ Originality
This study contributes in the existing literature which interested to study factors of plant resistance to agriculture insect pests and its’ role to improve new plant strains.

Ethnomedicinal Survey of Plants Used In Treating Sexually Transmitted Diseases in Abia State, Nigeria

Pages: 1-9
Find References

Finding References


Ethnomedicinal Survey of Plants Used In Treating Sexually Transmitted Diseases in Abia State, Nigeria

Search :
Google Scholor
Search :
Microsoft Academic Search
Cite

DOI: 10.18488/journal.69/2014.1.1/69.1.1.9

Citation: 1

Export to    BibTeX   |   EndNote   |   RIS

  1. WHO, Sexually transmitted infections (STIs) fact sheet N0° 110: World Health Organization. Available: www.who.int/.../fs110/, 2103.
  2. A. Sofowara, "African medicinal plants," in Proceedings of Conference, University of Lfe, Nigeria, 1982, pp. 70- 73.
  3. A. Sofowara, Medicinal plants and traditional medicine in Africa. New York: Wiley, 1984.
  4. I O M, The hidden spidermic confronting sexually transmitted diseases. Institute of medicine. Eng, TR and Butler, W T. Eds. Washington D. C.: Natural Academy Press, 1997.
  5. World Bank, "Nigeria maps AIDS epidemic future of HIV fights." Available: web.worldbank.org/home/topics/health/AIDS, 2012.
  6. P R B, Limited states and international profile: Population References Bureau. Available: www.prb.org, 2012.
  7. UNAIDS, "The global plan towards the elimination of new HIV infections among children by 2015 and keeping their mothers alive," United National 2013 Progress Report. Available: www.unaids.org/home/resources/presscentre/press Release and Statement Archieve, 2013.
  8. CDC and P, "Sexually transmitted disease surveillance, Division of STD prevention. Center for disease control and prevention. Health and Human Service, Atlanta, vol.30: (RR5 – 20), pp 112 – 134, 2000. In: Usanga, V. U, Abia-Bassey, L., Inyang-etoh , P. C., Udoh, S. M, Ani, F, and Archibong, E., 2010. Prevalence of sexually transmitted diseases in pregnant and non-pregnant women in Calabar, Cross River State, Nigeria," The Internet Journal of Gynecology and Obstetrics, vol. 14, 2000.
  9. UNFPA, Population projection: United Nations Population Fund Nigeria. Available: nigeria.unfpa.org/abia.html, 2013.
  10. FM0H, Nigeria herbal pharmacopeia, 1st ed. Nigeria: Federal Ministry of Health, Nigeria, 2008.
  11. K. K. Ajibesin, B. A. Ekpo, D. N. Bala, E. E. Essien, and S. A. Adesanya, "Ethnobotanical survey of Akwa Ibom State of Nigeria," J. Ethnopharmacol., vol. 115, pp. 387– 408, 2008.
  12. T. Teklehaymanot and M. Giday, "Ethnobotanical study of medicinal plants used by people in Zegie peninsula Northwestern Ethiopia," J. Ethonobiol Ethnomed., vol. 3, p. 12, 2007.
  13. T. Hayashi, K. Okamuka, M. Kawasaki, and N. Morita, "Production of diterpenoids by cultured cells from two chemotypes scoparia dulcis," Phytochemistry, vol. 35, pp. 353–356, 1993.
  14. L. S. Gills, Ethnomedical uses of plants in Nigeria. University of Benin Press Nigeria: University of Benin Press Nigeria, 1992.
  15. NNMDA, Medicinal plants of Nigeria, South-East Nigeria vol. 1: The Nigeria Natural Medicine Development Agency (Federal Ministry of Science and Technology), 2008.
  16. J. Kayode, R. A. Jose, and O. E. Ige, "Conversation and biodiversity erosion in Ondo State, Nigeria (4) assessing botanicals used in the cure of sexually transmitted diseases in Owo region," Ethnobot Leaflet, vol. 1, pp. 734–8, 2011.
  17. I. A. Ross, Medicinal plants of the world, chemical constituents, traditional and modern medicinal uses. Totowa: Huwana Press, 1999.
  18. J. O. Igoli, O. G. Ogaji, T. A. Tor-Anyin, and N. P. Igoli, "Traditional medicine practice amongst the Igede people of Nigeria Part II," Afr J. Trad., vol. 2, pp. 134–152, 2005.
  19. M. Idu, N. O. Obayagbona, E. O. Oshomoh, and J. O. Erhabor, "Phytochemical and antimicrobial properties of chrysophyllum albidum, dacryodes edulis, garcinia cola chloroform and ethanolic root extracts," J. Intercult. Ethnopharmacol., vol. 3, pp. 15-20, 2014.
  20. C. O. Okunji and M. M. Iwu, "Moluscidal activity of garcinia kola biflavonones," Fitoterapia, vol. 67, pp. 74–76, 1991.
  21. R. U. Ebana, B. E. Madunagu, E. D. Ekpe, and I. N. Otung, "Microbiological exploitation of cardiac glycosides and alkaloids from garcinia kola, Borreria ocymoides, kola nitida and citrus auratifolia," J. Appl. Bacteriol., vol. 71, pp. 398–401, 1991.
  22. O. A. Onayade, A. M. G. Looman, J. J. C. Scheffer, and Z. O. Cibile, "Lavender lactone and other volatile constituents of the oleoresin from seeds of garcinia kola hechel," Flavour Frangrance J., vol. 13, pp. 409–412, 1998.
  23. K. Terashima, Y. Kondo, M. Agil, and M. Waziri, "A study of biflavanones from the stem of garcinia kola," Heterocycles, vol. 50, pp. 238–290, 1999.
  24. H. Kagbo and D. Egbe, "Photochemistry and preliminary toxicity studies of the methanol extract of the stem bark of garcinia kola (Heckel)," The Internet Journal of Toxicology, vol. 7, 2010.
  25. Y. Sekiwa, K. Kubota, and A. Kobayashi, "Location of novel glycosides from ginger and their antioxidative activity," J. Agric Food Chem., vol. 8, pp. 373–379, 2000.
  26. P. Kamtchouing, F. G. Y. Mbongue, T. Dimo, and H. B. Jatsa, "Evaluation of androgenic activity of zingiber officinale extract in male rats," Asian J. Androl., vol. 4, pp. 299–301, 2002.
  27. Z. M. Al-Amin, M. Thomson, K. K. AI-Qattan, R. Peltonen-Shalaby, and M. Ali, "Antidiabetic and hypolipidemic properties of ginger (Zingiber Officinale) in strepotozontocin-induced diabetic rats," Br. J. Nutri., vol. 96, pp. 660-664, 2006.
  28. C. O. Eleazu, K. C. Eleazu, E. Awa, and S. C. Chukwuma, "Comparative study of the phytochemical composition of the leaves of five Nigerian medicinal plants," Journal of Biotechnology and Pharmaceutical Research, vol. 3, pp. 42-46, 2012.
  29. F. L. Ajoke, H. Kaita, and M. Ilyas, "Antibacterial activity-guided isolation of Di (2-Ethylhexyl) phthalate from the acetone- soluble portion of the ripe fruit of nauclea latifolia," The Journal of Phytochemistry. Photon., vol. 115, pp. 245-252, 2014.
  30. N. Mokhber-Dezfuli, S. Saeidnia, A. R. Gohari, and M. Kurepaz-Mahmoodabadi, "Phytochemistry and pharmacology of berberis species," Phcog. Rev., vol. 8, pp. 8-15, 2014.
  31. J. L. McLanghlin, S. Ratanyake, J. K. Rupprecht, and W. M. Potter, "Evaluation of various parts of the pawpaw tree, asimina triloba (Annonaceae) as commercial source of the pesticidal annonaceous acetogenins," J. Econ Entomol., vol. 85, pp. 2353–2356, 1992.
  32. C. Mantok, Multiple usage of green papaya in healing at tao garden. Thailand: Toa Garden health Spa and Resort. Available: www.tao-garden.cvm, 2005.
  33. D. E. Okwu, "The potentials of ocimium gratissium, pengluria extensa and tetrapleura tetraptera as spice and flavouring agents," Nig. Agic. J., vol. 34, pp. 143-148, 2003.
  34. K. C. Ofokansi, C. O. Esimone, and C. K. Anele, "Evaluation of the in vitro combined anti-bacterial effects of the leaf extracts of bryophyllum pinatum (Fam: Crassulaceae) and ocimum gratissimum (Fam: Labiate)," Plant prod. Res. J., vol. 9, pp. 23–27, 2005.
  35. H. O. Edeoga, G. Omosun, and L. C. Uche, "Chemical composition of hyptis suaveolens and ocimum gratissimum hybrids in Nigeria," African Journal of Biotechnology, vol. 5, pp. 892–895, 2006.
  36. K. Keefover-Ring, M. Carlsson, and B. R. Albrectsen, "Cinnamoylsalicortin: A novel salicinoid isolated from populus tremula," Phytochemistry Letters, vol. 7, pp. 212-216, 2014.
No any video found for this article.
(2014). Ethnomedicinal Survey of Plants Used In Treating Sexually Transmitted Diseases in Abia State, Nigeria. Review of Plant Studies, 1(1): 1-9. DOI: 10.18488/journal.69/2014.1.1/69.1.1.9
The prevalence of sexually transmitted diseases in Nigeria is still high. In this study, an ethno medicinal survey was conducted to record the different plant families, species and plants parts used for the treatment of sexually transmitted diseases in Abia State of Nigeria. The result revealed that a total of 62 plant species in 48 genera from 44 families mostly the Euphorbiaceae, Fabaceae, Asteraceae, Rutaceae, and Malvaceae were used to treat diseases such as gonorrhoea, syphilis, trichonomiasis, chlamydia, urethritis, and to suppress the replication of HIV. The most plant parts used were leaves (32.5%), stem bark (23.75%) and root (20%). Other parts used included the fruits (7.5%), the seeds (3.75%) and the aerial parts (12.5%). More research is needed to extract and isolate the active chemical compounds under sound hygienic condition and study their mode of function.
Contribution/ Originality
This work contributes in the existing literatures on the use of ethnomedicinal plants in the treatment of sexually transmitted diseases in Abia State and Nigeria. This work is one of the very few studies which investigated the use of plants in treating sexually transmitted diseases such as gonorrhea, syphilis, HIV and Chlamydia. The primary contribution of this paper is in the finding that different plant parts can be used as a remedy for sexually transmitted diseases in Abia State of Nigeria. The study therefore documents an inventory of plants, plant parts, families, botanical, common and local names of plants used in the treatment of sexually transmitted diseases in Abia State of Nigeria.