Processing of fruits through radiation, involves exposure to short wave energy to achieve a specific purpose viz. reduced the weight loss and extended the ripening. An experiment was carried out to study the effect of irradiation and storage conditions in Alphonso mango on physiological weight loss and ripening. The experiment was laid out in completely randomized block design withfactorial concept with three repetitions. There were sixteen treatment combinations of irradiation dose (I1 -0.00, I2 -0.20, I3 -0.40 and I4 -0.60 kGy) and storage temperature (S1-Ambient, S2-90C, S3-120C and S4-CA storage (120C, O2 2%, CO2 3%). The fruits were exposed to gamma radiation for different doses from the source of 60Co at Board of Radiation and Isotope Technology, Bhabha Atomic Research Centre, Mumbai. The data indicated that the fruits irradiated with 0.40 kGy gamma rays (I3) recorded significantly minimum per cent reduction in PLW and extended the ripening. Same pattern noted when fruits kept at 90C storage temperature. In combined effect of 0.40 kGy gamma rays irradiation and 90C storage temperature (I3S2) also recorded maximum reduction in the PLW and ripening per cent throughout the storage period.
Aina, J.O., O.F. Adesiji and S.R.B. Ferris, 1999. Effect of gamma irradiation on post harvest ripening of plantain fruit (Musa Paradisiaca L.). Cultivars. J. Sci. Food and Agric, 79(5): 653-656.
Anonymous, 2007. Post harvest manual for mangoes. APEDA, Ministry of Agriculture, Govt. of India: 45-48.
Deka, B.C., A. Choudhury, K.H. Bhattacharyya, Begum and M. Neog, 2006. Postharvest treatment for shelf life extension of banana under different storage environments. Acta Hort., 745(2): 841-849.
El-Salhy, F.T.A., S.A.A. Khafagy and L.F. Haggay, 2006. The changes that occur in mango fruits treated by irradiation and hot water during cold storage. J. Appl. Res., 2(11): 864-868.
Farzana, P., 2005. Post harvest technology of mango fruits, its development, physiology, pathology and marketing in Pakistan. Germany: Digital VerlagGmbH Pub.
Gomez-Lim, M.R., 1993. Mango fruit ripening: Physiological and molecular biology. Forth International Mango Symposium, Acta Hort., 341 (Eds. Bruce Schaffer) Tropical Research and Education Center, Florida. pp: 484-496.
Gutierrez, A.O., A.D. Nieto, D. Martinez, A.M.T. Dominguez, S. Delgadillo and A.J.G. Qutierrez, 2002. Low temperature plastic film, maturity stage and shelf life of guava fruits. Revista Chapingo Serie Hort, 8(2): 283-301.
Krishnamurthy, S. and S.S. Joshi, 1989. Studies on low temperature storage of alphonso mangoes. J. Food Sci. Technol, 26(4): 177-180.
Mahindru, S.N., 2009. Food preservation and irradiation. New Delhi: APH Publishing Corporation.
Mane, S.R., 2009. Assessment of influence of maturity indices, post harvest treatments and storage temperatures on shelf life of mango (Mangifera Indica L.) Cv. Kesar. M. Sc. Thesis, Navsari Agricultural University, Navsari, India.
Mann, S.S. and R.N. Singh, 1975. Studies on cold storage of mango fruits (Mangifera Indica L.). Cv. Langra. Indian J. Hort, 32(1): 7-14.
Mayer, B.S., D.S. Anderson and R.H. Bhing, 1960. Introduction to plant physiology. London: D. Van Nastrand Co. Ltd.
McLauchlan, R.L., G.E. Mitchell, G.I. Johnson and P.A. Wills, 1990. Irradiation of kensington mangoes. Acta Hort, 269(4): 469-476.
Nagaraju, C.G. and T.V. Reddy, 1995. Deferral of banana fruit ripening by cool chamber storage. Adv. Hort. Sci, 9(4): 162-166.
Panse, V.G. and P.V. Sukhatme, 1967. Statistical methods for agricultural workers. New Delhi: ICAR.
Pimentel, R.M.D.A. and J.M.M. Walder, 2004. Gamma irradiation in papaya harvested at three stages of maturation. Sci. Agric, 61(2): 140-150.
Prasadini, P.P., M.A. Khan and P.G. Reddy, 2008. Effect of irradiation on shelf life and microbiological quality of mangoes (Mangifera Indica L.). J. Res. ANGRU, 36(4): 14-23.
Purohit, A.K., T.S. Rawat and A. Kumar, 2009. Shelf life and quality of ber fruit cv. Umran in response to post harvest application of ultra violate radiation and paclobutrazole. Pl. Foods for Human Nut, 58(3): 1-7.
Roy, S.K. and G.D. Joshi, 1989. An approach to integrated post harvest handling of mango. Acta Hort, 231(4): 469-661.
Singh, S.P. and R.K. Pal, 2009. Ionizing radiation treatment to improve postharvest life and maintain quality of fresh guava fruit. Radiation Phy. and Chem, 78(11): 135-140.
Spalding, D.H. and W.F. Reeder, 1986. Decay and acceptability of mangos treated with combinations of hot water, imazalil and gamma radiation. Plant Dis, 70(7): 1149-1151.
Udipi, S.A. and P.S. Ghurge, 2010. Applications of food irradiation. In: Food irradiation Eds. Udipi, S. A. and Ghugre, P. S. Udaipur: Agrotech Publishing Academy. pp: 40-71.
Waskar, D.P. and S.D. Masalkar, 1997. Effect of hydrocooling and bavistin dip on the shelf life and quality of mango during storage under various environments. Acta Hort, 455(5): 687-695.
Yadav, M.K. and B.R. Parmar, 2014. Response to ? radiation and storage temperature on quarantine pests of alphonso mango. J. Hort. Forestry, 6(5): 50-52.
Yadav, M.K. and N.L. Patel, 2013. Effect of gamma radiation and storage temperature on post harvest rotting management of kesar mango. J. Mycol. Plant Patho, 42(2): 201-204.
Yadav, M.K. and N.L. Patel, 2014. Optimization of irradiation and storage temperature for delaying ripening process and maintaining quality of alphonso mango fruit (Mangifera Indica L.). Afr. J. Agric. Res, 9(5): 562-571.
Yadav, M.K., N.L. Patel, A.D. Chaudhary and B.R. Parmar, 2013c. Gamma irradiation and storage temperature affects the physiological weight loss and ripening of kesar mango. Int. J. Agri Med. Plant Res, 1(3): 12-17.
Yadav, M.K., N.L. Patel, B.R. Parmar and N. Dileswar, 2013a. Evaluation of physiological and sensory changes of Kesar mango (Mangifera Indica L.). Influenced by ionizing radiation and storage temperature. SAARC Agri. J, 11(2): 69-80.
Yadav, M.K., N.L. Patel and S.R. Patel, 2013b. Effect of irradiation and storage temperature on quality parameters of kesar mango (Mangifera Indica L.). Indian J. Plant Physiol, 18(3): 313-317.