DOI: 10.18488/journal.70.2020.74.316.324
Md. Saidur Rahman ,
Mahmoda Akter ,
Md. Shah Newaz Chowdhury ,
Md. Mofizur Rahman ,
Mostarak Hossain Munshi
Akram, N. A., Shafiq, F., & Ashraf, M. (2011). Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Frontiers in Plant Science, 8, 1-17.Available at: https://doi.org/10.3389/fpls.2017.00613.
Bhalekar, M., Kadam, V., Shinde, U., Patil, R., & Asane, G. (2009). Effect of plant growth regulator and micronutrients on growth and yield of chilli (Capsicum annum L.) during summer season. Advances in Plant Sciences, 22(1), 111-113.
Chaudhary, B., Sharma, M., Shakya, S., & Gautam, D. (2006). Effect of plant growth regulators on growth, yield and quality of chilli (Capsicum annuum L.) at Rampur, Chitwan. Journal of the Institute of Agriculture and Animal Science, 27, 65-68.Available at: https://doi.org/10.3126/jiaas.v27i0.697.
Choudhury., S., Islam, N., Sarkar, M., & Ali, M. (2013). Growth and yield of summer tomato as influenced by plant growth regulators. International Journal of Sustainable Agriculture, 5(1), 25-28.
Das, S., Sarkar, M. D., Alam, M., Robbani, M., & Kabir, M. (2015). Influence of plant growth regulators on yield contributing characters and yield of bell pepper (Capsicum annum) varieties. Journal of Plant Sciences, 10(2), 63-69.Available at: https://doi.org/10.3923/jps.2015.63.69.
Deb, P., Suresh, C. P., Saha, P., & Das, N. (2009). Effect of NAA and GA3 on yield and quality of tomato (Lycopersicon esculentum Mill.). Environment and Ecology, 27(3), 1048-1050.
Ei-Tohamy, W., Ei-Abagy, H., & Ei-Greadly, N. (2008). Studies on the effect of putrescine, yeast and vitamin C on growth, yield and physiological responses of eggplant (Solanum melongena L.) under sandy soil conditions. Australian Journal of Basic Applied Science, 2(2), 296-300.
El-Al, A., & Faten, S. (2009). Effect of urea and some organic acids on plant growth, fruit yield and its quality of sweet pepper (Capsicum annum). Research Journal of Agriculture and Biological Sciences, 5(4), 372-379.
El-Hifny, I. M., & El-Sayed, M. (2011). Response of sweet pepper plant growth and productivity to application of ascorbic acid and biofertilizers under saline conditions. Australian Journal of Basic and Applied Sciences, 5(6), 1273-1283.
El-Yazeid, A. (2011). Effect of foliar application of salicylic acid and chelated zinc on growth and productivity of sweet pepper (Capsicum annuum L.) under autumn planting. Research Journal of Agriculture and Biological Sciences, 7(6), 423-433.
El Bassiouny, H. M., Gobarah, M. E., & Ramadan, A. A. (2005). Effect of antioxidants on growth, yield and favism causative agents in seeds of Vicia faba L. plants grown under reclaimed sandy soil. Journal of Agronomy, 4(4), 281-287.
Erickson, A. N., & Markhart, A. H. (2001). Flower production, fruit set, and physiology of bell pepper during elevated temperature and vapor pressure deficit. Journal of the American Society for Horticultural Science, 126(6), 697-702.Available at: https://doi.org/10.21273/JASHS.126.6.697.
Fathy, E.-S., Farid, S., & El-Desouky, S. (2000). Induce cold tolerance of outdoor tomatoes during early summer season by using ATP, yeast, other natural and chemical treatments to improve their fruiting and yield. Journal of Agricultural Science of Mansoura University, 25(1), 377-401.
Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research (pp. 67-215). New York: John wlley and Sons. Inc.
Hayat, S., & Ahmad, A. (2007). The role of salicylates in rhizobium legume symbiosis and abiotic stresses in higher plants. Salicylic Acid–A Plant Hormone (pp. 151-162). Dordrecht: Springer.
Hosain, M. T., Kamrunnahar., R., M. M., Munshi, M. H., & Rahman, M. S. (2020). Drought stress response of rice yield (Oryza sativa L.) and role of exogenous salicylic acid. International Journal of Bioscience, 16(2), 222-230.Available at: https://doi.org/10.12692/ijb/16.2.222-230.
Howard, L., Talcott, S., Brenes, C., & Villalon, B. (2000). Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. Journal of Agricultural and Food Chemistry, 48(5), 1713-1720.Available at: https://doi.org/10.1021/jf990916t.
Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6, 1-17.Available at: https://doi.org/10.3389/fpls.2015.00462.
Khan, W., Rayirath, U. P., Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M., . . . Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28(4), 386-399.Available at: https://doi.org/10.1007/s00344-009-9103-x.
Mahmood, N., Abbasi, N. A., Hafiz, I., Ali, I., & Zakia, S. (2017). Effect of biostimulants on growth, yield and quality of bell pepper cv. Yolo Wonder. Pakistan Journal of Agricultural Science, 54, 311–317.Available at: https://doi.org/10.21162/PAKJAS/17.5653.
Maity, U., & Bera, A. (2009). Effect of exogenous application of brassinolide and salicylic acid on certain physiological and biochemical aspects of green gram (Vigna radiata L. Wilczek). Indian Journal of Agricultural Research, 43(3), 194-199.
Mandal, S., Yadav, S., Yadav, S., & Nema, R. K. (2009). Antioxidants: A review. Journal of Chemical and Pharmaceutical Research, 1(1), 102-104.
Miura, K., & Tada, Y. (2014). Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science, 5, 1-12.Available at: https://doi.org/10.3389/fpls.2014.00004.
Naz, H., Akram, N. A., & Ashraf, M. (2016). Impact of ascorbic acid on growth and some physiological attributes of cucumber (Cucumis sativus) plants under water-deficit conditions. Pakistan Journal of Botany, 48(3), 877-883.
Nour, K., Mansour, N., & Eisa, G. (2012). Effect of some antioxidants on some physiological and anatomical characters of snap bean plants under sandy soil conditions. New York Science Journal, 5(5), 1-9.
Qian, H., Peng, X., Han, X., Ren, J., Zhan, K., & Zhu, M. (2014). The stress factor, exogenous ascorbic acid, affects plant growth and the antioxidant system in Arabidopsis thaliana. Russian Journal of Plant Physiology, 61(4), 467-475.
Rahman, M. S., Saki, M. J., Hosain, M. T., & Rashid, S. (2019). Cumulative effect of zinc and gibberellic acid on yield and quality of tomato. International Journal of Bioscience, 14(3), 350-360.Available at: https://doi.org/10.12692/ijb/14.3.350-360.
Sarkar, M., Jahan, M. S., Kabir, M., Kabir, K., & Rojoni, R. (2014). Flower and fruit setting of summer tomato regulated by plant hormones. Applied Science Report, 7, 117-120.Available at: https://doi.org/10.15192/PSCP.ASR.2014.3.3.117120.
Seth, D., Melino, V., & Ford, C. M. (2007). Ascorbate as a biosynthetic precursor in plants. Annals of Botany, 99(1), 3-8.Available at: https://doi.org/10.1093/aob/mcl236.
Shafeek, M., Helmy, Y., Marzauk, N. M., & Magda, A. Shalaby and Nadia, M. Omer, 2013. Effect of foliar application of some antioxidants on growth, yield and chemical composition of Lettuce plants (Lactuca Sativa L.) under plastic house condition. Middle East Journal of Applied Sciences, 3(2), 70-75.
Wassel, A. H., Hameed, M. A., Gobara, A., & Attia, M. (2007). Effect of some micronutrients, gibberellic acid and ascorbic acid on growth, yield and quality of white Banaty seedless grapevines. Paper presented at the 8th African Crop Science Society Conference, El-Minia, Egypt. African Crop Science Society.
Zaghlool, A. M., Ibrahim, S. I., Sharaf, & Eldeen, H. A. M. (2001). The effect of naphthaline acetic acid (NAA), salicylic acid (SA) and their combination on growth, fruit setting yield and some correlated components in dry bean (Phaseolus vulgaris L.). Annals of Agricultural Science, 46(2), 451-463.
Zaki, R., & Radwan, T. (2011). Improving wheat grain yield and its quality under salinity conditions at a newly reclaimed soil by using different organic sources as soil or foliar applications. Journal of Applied Sciences Research, 7(1), 42-55.
DOI: 10.18488/journal.70.2020.74.304.315
Otiobo Atibita Esther Nadine ,
Lukong Anmarie Wirmai , Fotso . , Tita Margaret Awah , Theresia Nkuo-Akenji
Abdoul, A. S., Moise, H., & Akoulong, C. (2008). Diagnosis of Cameroon's national agricultural research and extension system and capacity building strategy for the dissemination of agricultural knowledge and technologies. CEMAC Project Report (p. 143). TCP / RAF / 2913.
Al-Ghzawi, A., Zaittoun, S. T., Makadmeh, I., & Al-Tawaha, A.-R. M. (2003). The impact of wild bees on the pollination of eight okra genotypes under semi-arid Mediterranian conditions. International Journal of Agriculture and Biology, 5(4), 409-411.
Amada, B., Dounia, C., D., Ningatoloum, C., Guiffo, G. A. A., Angoula, B. S., Ngonaïna, J. P., . . . Tchuenguem, F. F.-N. (2018). Diversity of flowering insects and their impact on yields of Abelmoschus esculentus (L.) Moench, 1794 (Malvaceae) in Yaoundé (Cameroon). Journal of Entomology and Zoology Studies, 6(6), 945-949.
Angbanyere, M. A. I. (2012). The effect of pollinators and pollination on fruit set and fruit yields of okra (Abelmoschus esculentus (L) Moench) in the forest region of Ghana. Doctoral Dissertation.
Angbanyere, M. A., & Baidoo, P. K. (2014). The effect of pollinators and pollination on fruit set and fruit yield of Okra (Abelmoschus esculentus (L.) Moench) in the Forest Region of Ghana Journal of Experimental Agriculture International, 4(9), 985-995.
Atibita, E. N. O., Fohouo, F.-N. T., & Djieto-Lordon, C. (2015). Foraging and pollination behavior of Apis mellifera adansonii (Hymenoptera: Apidae) on Physalis micrantha (Solanales: Solanaceae) flowers at Bambui (Nord West, Cameroon). Journal of Entomology and Zoology Studies, 3(6), 250-256.
Azo'o, M. E., Fohouo, F.-N. T., & Messi, J. (2011). Influence of the foraging activity of the entomofauna on okra (Abelmoschus esculentus) seed yield. International Journal of Agriculture and Biology. International Journal of Agriculture & Biology, 13(5), 761-765.
Borror, D. J., & White, R. E. (1991). North America insects (North of Mexico). Broquet (Eds) (pp. 408): The Prairie-Quebec.
Chandra, S., & Bhatnagar, S. (1975). Reproductive biology of Abelmoschus esculentus. 1.-Reproductive behaviour, floral morphology, anthesis and pollination mechanism. Acta Botanica Indica, 3, 104–113.
Crane, E. (1991). Apis species of tropical Asia as pollinators, and some rearing methods for them. Acta horticulturae, 288, 29-48.
Delaplane, K. S., Dag, A., Danka, R. G., Freitas, B. M., Garibaldi, L. A., Goodwin, R. M., & Hormaza, J. I. (2013). Standard methods for pollination research with Apis mellifera. Journal of Apicultural Research, 52(4), 1-28.
Demarly, Y. (1977). Plant Genetics and plant breeding (pp. 285). Masson - Paris (France).
Douka, C., & Fohouo, F. H. T. (2013). Foraging and pollination behavior of Apis mellifera adansonii L.(Hymenoptera, Apidae) on Phaseolus vulgaris (Fabaceae) flowers at Maroua (Cameroon). International Research Journal of Plant Science, 4(2), 45-54.
Douka, C., & Fohouo, F. N. T. (2014). Foraging and pollination activity of Musca domestica L.(Diptera: Muscidae) on flowers of Ricinus communis L.(Euphorbiaceae) at Maroua, Cameroon. Journal of Biodiversity and Environmental Sciences (JBES), 4(3), 63-76.
Douka, C., Tamesse, J. L., & Tchuenguem, F. F. N. (2017). Impact of single visit of Lipotriches collaris Vachal 1903 (Hymenoptera: Halictidae) on Phaseolus vulgaris (Fabaceae) flowers at Maroua (Cameroon). Journal of Applied Biology & Biotechnology, 5(2), 072-076.
Dounia, T. F. F., & Tchuenguem Fohouo, E. (2013). Foraging and pollination activity of Apis mellifera adansonii Latreille (Hymenoptera: Apidae) on flowers of Gossypium hirsutum L.(Malvaceae) at Maroua, Cameroon. International Research Journal of Plant Science, 4(2), 33-44.
Dounia., T. J. L., & Tchuenguem, F. F.-N. (2016). Foraging and pollination activity of Lipotriches collaris Vachal 1903 (Hymenoptera: Halictidae) on flowers of Glycine max (L.) (Fabaceae) in Maroua-Cameroon. Journal of Animal &Plant Sciences, 29(1), 4515-4525.
DSCE. (2009). Growth and employment strategy paper. Yaoundé, Cameroon: MINEPAT.
FAO. (2018). The state of food and agriculture 2018. Migration, agriculture and rural development (pp. 199). Rome: Licence: CC BY-NC-SA 3.0 IGO.
Fao, F. A. O. S. T. A. T. (2008). Food and agricultural organization of the United Nations. Retrieved on,15.
Free, J. B. (1993). Insect pollination of crops (pp. 684). London, UK: Academic Press.
George, R. A. T. (1989). Vegetable seed production (pp. 330). Spanish: Mundi-Prensa.
Hasnat, M., Sarkar, S., Hossain, M., Chowdhury, I., & Matin, M. (2015). Relative abundance of pollinators, foraging activity of bee species and yield performance of okra at Dhaka (Bangladesh). Journal Crop and Weed, 11(2), 34-37.
Joshi, A. B., Gadwal, V. R., Hardas, M. W., & Hutchinson, J. B. (1974). Evolutionary studies in world crops. Diversity and change in the Indian Sub–Continent (pp. 99-105). London: Cambridge University Press.
Jousselin, E., & Kjellberg, F. (2001). The functional implications of active and passive pollination in dioecious figs. Ecology Letters, 4(2), 151-158.Available at: https://doi.org/10.1046/j.1461-0248.2001.00209.x.
Justo, V. P. (2005). Okra: Integrated pest management an ecological guide (pp. 50). Laguna – Philippines.
Kasper, M., Reeson, A., Mackay, D., & Austin, A. (2008). Environmental factors influencing daily foraging activity of Vespula germanica (Hymenoptera, Vespidae) in Mediterranean Australia. Insectes Sociaux, 55(3), 288-295.Available at: https://doi.org/10.1007/s00040-008-1004-7.
Khan, R. (2019). Diversity of insects in Okra agro-ecosystem at Gazipur in Bangladesh. Indian Journal of Ecology, 46(1), 214-216.
Kingha, B. M. T., Fohouo, N. T., Ngakou, A., & Bruuml, D. (2012). Foraging and pollination activities of Xylocopa olivacea (Hymenoptera, Apidae) on Phaseolus vulgaris (Fabaceae) flowers at Dang (Ngaoundere-Cameroon). Journal of Agricultural Extension and Rural Development, 4(10), 330-339.Available at: https://doi.org/10.24214/jcbps.b.10.4.65972.
Klein, A.-M., Vaissiere, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 303-313.Available at: https://doi.org/10.1098/rspb.2006.3721.
Kochhar, S. L. (1986). Tropical crops: A textbook of economic botany (pp. 467). Hong Kong: Macmillan.XI.
Kumar, R. (1991). The fight against insect pests: The state of African agriculture: Ctakarthala (Eds) (pp. 231). Paris: Wageningen.
Kumar, S., Dagnoko, S., Haougui, A., Ratnadass, A., Pasternak, D., & Kouame, C. (2010). Okra (Abelmoschus spp.) in West and Central Africa: Potential and progress on its improvement. African Journal of Agricultural Research, 5(25), 3590-3598.
Lobreau-Callen, D., & Coutin, R. (1987). Floral resources exploited by a few Apoids in cultivated areas in the Senegalese savannah during the rainy season. Agronomy, 7(4), 231-246.
Louveaux, J. (1984). Domestic bee and their relation with grown plants «Pollination and plant production» (pp. 527-555). Paris, France: Pesson P, Louveaux J, INRA.
McGregor, S. E. (1976). Insect pollination of cultivated crop plants (pp. 496). Washington: Agricultural Research Service, US Department of Agriculture.
Messiaen, C. M. (1992). The tropical vegetable garden. Principles for improvement and increased production with application to the main vegetable types (pp. 528). London: Macmillan Press Ltd.
Nandhini, E., Padmini, K., Venugopalan, R., Anjanappa, M., & Lingaiah, H. (2018). Flower-visiting insect pollinators of okra [Abelmoschus esculentus (L.) Moench] in Bengaluru region. Journal of Pharmacognosy and Phytochemistry, 7(2), 1406-1408.
Neba, N. E., & Eze, E. (2004). Geomorphic and anthropogenic factors influencing landslides in the Bameda Highlands, NW province, Cameroon. Journal of Applied Social Sciences (Buea, Cameroon), 4(1), 15-26.
Njoya, M. T., Wittmann, D., & Schindler, M. (2005). Effect of bee pollination on seed set and nutrition on okra (Abelmoschus esculentus) in Cameroon. The Global Food and Product Chain--Dynamics, Innovations, Conflicts, Strategies. Germany: Hohenheim.
Norman, J. C. (1992). Tropical vegetable crops: Arthur H. Stockwell (pp. 252): University of Wisconsin-Madison.
Oyolu, C. (1983). Okra seeds, potential source of high quality vegetable oil. Paper presented at the In Proceedings, 5th Annual Conference, Horticulture Society. Nigeria, Nsukka.
Pando, J. B., Djonwangwé, D., Moudelsia, O. B., Fohouo, F.-N. T., & Tamesse, J. L. (2019). Insect pollinators and productivity of soybean [Glycine max (L.) Merr. 1917] at Maroua, Far North, Cameroon. World Journal of Advanced Research and Reviews, 4(2), 117-129.
Pando, J., Djonwangwé, D., Moudelsia, O., Fohouo, F.-N., & Tamesse, J. L. (2020). Diversity of flower-growing insects of Abelmoschus esculentus (Malvaceae) and their impact on fruit and grain yields in Maroua-Cameroon. Journal of Animal & Plant Sciences, 43(1), 7350-7365.
Reddy, L. J., Chandra, S., Pooni, H., & Bramel, P. J. (2004). Rate of out crossing in pigeon pea under intercropped conditions. Assessing the Risk of Losses in Biodiversity in Traditional Cropping Systems: A Case Study of Pigeon pea in Andhra Pradesh.(Bramel PJ, ed.). Patancheru, 502(324), 133-141.
Sawadogo, M., Zombre, G., & Balma, D. (2006). Expression of different ecotypes of okra (Abelmoschus esculentus L.) with water deficit occurring during budding and flowering. Biotechnology, Agronomy, Society and Environment, 10(1), 43-54.
Tanda, A. (2019). Entomofauna enhance the quality and quantity in Okra. Indian Journal of Entomology, 81(1), 16-17.Available at: https://doi.org/10.5958/0974-8172.2019.00073.7.
Tchindebe, G., & Fohouo, F.-N. T. (2014). Foraging and pollination activity of Apis mellifera adansonii Latreille (Hymenoptera: Apidae) on flowers of Allium cepa L.(Liliaceae) at Maroua, Cameroon. International Journal of Agronomy and Agricultural Research, 5(2), 139-153.
Tchindebe, G., Douka, C., Tope, S., & Fohouo, F. (2018). Diversity of flowering insect and its impact on fruit and seed yields of Arachis hypogaea L.(Fabaceae) at Maroua (Far North, Cameroon). Journal of Applied Biosciences, 129(2018), 13075-13087.
Tchuenguem, F. F. N., Messi, J., & Pauly, A. (2001). Activity of Meliponula erythra on dacryodes edulis flowers and its impact on fruiting. Fruits, 56(3), 179-188.
Tchuenguem Fohouo, F. N. (2005). Foraging and pollination activity of Apis mellifera adansonii Latreille (Hymenoptera: Apidae, Apinae) on the flowers of three plants in Ngaoundéré (Cameroon): Callistemon rigidus (Myrtaceae), Syzygium guineense var. macrocarpum (Myrtaceae) and Voacanga africana (Apocynaceae). These doctoral studies, University of Yaoundé I, Yaoundé, Cameroon.
Tchuenguem, F., FN, Messi, J., Brüchner, D., Bouba, B., Mbofung, G., & Hemo, J. H. (2004). Foraging and pollination behaviour of the African Honey bee (Apis mellifera adansonii) on Callistemon rigidus flowers in Ngaoundere (Cameroon). Journal of the Cameroon Academy of Sciences, 4(2), 133-140.
DOI: 10.18488/journal.70.2020.74.287.303
Ahmed, R., & Kim, I.-K. (2003). Patterns of daily rainfall in Bangladesh during the summer monsoon season: case studies at three stations. Physical Geography, 24(4), 295-318.Available at: https://doi.org/10.2747/0272-3646.24.4.295.
Bali Action Plan. (2007). Report of the Conference of the Parties on its thirteenth session, held in Bali from 3 to 15 December 2007, Retrieved from: http://unfccc.int/resource/docs/2007/cop13/eng/06a01.pdf . [Accessed 10 December 2013].
Basak, J. K. (2009). Climate change impacts on rice production in Bangladesh: Results from a model. Center for research and action on development. Dhaka, Bangladesh: Unnayan Onneshan (www. unnayan. org).
Campbell, B. M., Vermeulen, S. J., Aggarwal, P. K., Corner-Dolloff, C., Girvetz, E., Loboguerrero, A. M., . . . Thornton, P. K. (2016). Reducing risks to food security from climate change. Global Food Security, 11, 34-43.Available at: https://doi.org/10.1098/rstb.2005.1745.
Chowdhury, I. U. A., & Mohammad, A. E. K. (2015). The impact of climate change on rice yield in Bangladesh: A time series analysis. Russian Journal of Agricultural and Socio-Economic Sciences, 40(4), 12-28.Available at: https://doi.org/10.18551/rjoas.2015-04.02.
Dasgupta, S., Hossain, M. M., Huq, M., & Wheeler, D. (2014). Climate change, soil salinity, and the economics of high-yield rice production in coastal Bangladesh. Policy Research Working Paper 7147.
De, U. K. (2017). An application of vector error correction model to analyze the impact of climate change on agricultural productivity in India's north-eastern region Sub Title Author De, Utpal Kumar Mallik, Girijasankar. Keio Economic Studies, 53, 39-51.
Easterling, W. E. (2007). Climate change and the adequacy of food and timber in the 21st century. Proceedings of the National Academy of Sciences, 104(50), 19679-19679.Available at: https://doi.org/10.1073/pnas.0710388104.
Greene, W. (2008). Functional forms for the negative binomial model for count data. Economics Letters, 99(3), 585-590.Available at: https://doi.org/10.1016/j.econlet.2007.10.015.
Gregory, P. J., Ingram, J. S., & Brklacich, M. (2005). Climate change and food security. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463), 2139-2148.Available at: https://doi.org/10.1098/rstb.2005.1745.
Hossain, T., & Noman, A. (2018). Climate change, agricultural transformation and food security in Northern Bangladesh. Bangladesh Economic Association (BEA). Retrieved from: http://bea-bd.org/site/images/pdf/new17/47.pdf.
Islam, A., Tasnuva, A., Sultana, S., & Rumana, S. (2014). Climate change impact: Food production and local Perception. American Journal of Environmental Protection, 3(2), 45-50.Available at: https://doi.org/10.11648/j.ajep.20140302.11.
Islam, M., Baten, M., Hossain, M., & Islam, M. (2008). Impact of few important climatic parameters on aman rice production in Mymensingh District. Journal of Environmental Science and Natural Resources, 1(2), 49-54.Available at: https://doi.org/10.21474/ijar01/7272.
Ismail, H. (2016). Climate change, food and water security in Bangladesh (Vol. 5, pp. 202). Hampden Road, Nedlands WA 6009, Australia: Future Directions International Pty Ltd.,Suite.
Kabir, M. H., Ahmed, Z., & Khan, R. (2016). Impact of climate change on food security in Bangladesh. Journal Pet Environ Biotechnol, 7(6), 306.Available at: https://doi.org/10.4172/2157-7463.1000306.
Kalra, N., Chakraborty, D., Sharma, A., Rai, H., Jolly, M., Chander, S., . . . Mittal, R. (2008). Effect of increasing temperature on yield of some winter crops in northwest India. Current science, 94(1), 82-88.
Lobell, D. B., & Field, C. B. (2007). Global scale climate–crop yield relationships and the impacts of recent warming. Environmental Research Letters, 2(1), 014002.
Lobell, D. B., Wolfram, S., & Justin, C.-R. (2011). Climate trends and global crop production since 1980. Science, 333(6042 ), 616-620.Available at: 10.1126/science.1204531.
Mamun, A. M., Ghosh, B. C., & Islam, S. R. (2015). Climate change and rice yield in Bangladesh: A micro regional analysis of time series data. International Journal of Scientific and Research Publications, 5(2), 189-196.
Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics, 16(3), 289-326.Available at: https://doi.org/10.1002/jae.616.
Rahman, A., & Biswas, P. (1995). Devours resources. Dhaka Courier, 11(42), 7-8.
Sarker, M. A. R., Khorshed, A., & Jeff, G. (2012). Exploring the relationship between climate change and rice yield in Bangladesh: An analysis of time series data. Agricultural Systems, 112 11-16.Available at: https://doi.org/10.1016/j.agsy.2012.06.004.
Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proceedings of the National Academy of Sciences, 106(37 ), 15594-15598.Available at: https://doi.org/10.1073/pnas.0906865106.
Schmidhuber, J., & Tubiello, F. N. (2007). Global food security under climate change. Proceedings of the National Academy of Sciences, 104(50), 19703-19708.Available at: https://doi.org/10.1073/pnas.0701976104.
Shelley, I. J., Takahashi-Nosaka, M., Kano-Nakata, M., Haque, M. S., & Inukai, Y. (2016). Rice cultivation in Bangladesh: present scenario, problems, and prospects. Journal of International Cooperation for Agricultural Development, 14(4), 20-29.
Sikder, R., & Xiaoying, J. (2014). Climate change impact and agriculture of Bangladesh. Journal of Environment and Earth Science, 4(1), 35-40.
Talukder, B. (2007). Climate change and agriculture. The Daily Star. Retrived from: https://www.thedailystar.net/news-detail-5675.
Tesso, G., Emana, B., & Ketema, M. (2012). A time series analysis of climate variability and its impacts on food production in North Shewa zone in Ethiopia. African Crop Science Journal, 20 261-274.
Van Scheltinga, & CTHM Terwisscha. (2015). Recent changes in temperature and rainfall trends and variability over Bangladesh. Paper presented at the Gobeshona Conference on Research on Climate Change in Bangladesh.
Yohannes, H. (2016). A review on relationship between climate change and agriculture. Journal of Earth Science & Climatic Change, 7(2), 335.Available at: 10.4172/2157-7617.1000335.
DOI: 10.18488/journal.70.2020.74.275.286
Acocks, J. (1988). Veld types of South Africa. Memoirs Botanical Survey South Africa, No.57 (3rd ed., pp. 1-146). South Africa: SANBI, Pretoris.
Barnes, D., Odendaal, J., & Beukes, B. (1982). Use of the dry-weight-rank method of botanical analysis in the eastern Transvaal Highveld. Proceedings of the Annual Congresses of the Grassland Society of Southern Africa, 17(1), 79-83.
Briske, D. D., Derner, J., Brown, J., Fuhlendorf, S. D., Teague, W., Havstad, K., & Willms, W. (2008). Rotational grazing on rangelands: Reconciliation of perception and experimental evidence. Rangeland Ecology & Management, 61(1), 3-17. Available at: https://doi.org/10.2111/06-159r.1.
Coetzee, M. (2006). Best land-use strategies towards sustainable biodiversity and land degradation management in semi-arid Western rangelands in Southern Africa, with special reference to ants as bio-indicators (2006). PhD-Thesis, North West University, Potchefstroom Campus.
DAFF (Department of Agriculture Forestry & Fisheries). (2017). Abstract of agricultural Statistics 2017. Pretoria: Directorate Statistics and Economic Analysis.
De Bruyn, T. D., Goqwana, M., & Van Averbeke, W. (1998). Is communal grazing in the Eastern Cape sustainable? Veld and Flora, 84(3), 82-83.
De Lange, A. (1994). Communal farming in arid regions. Karoo Agric, 6(1), 12-16.
Delgado, J. A., Groffman, P. M., Nearing, M. A., Goddard, T., Reicosky, D., Lal, R., & Salon, P. (2011). Conservation practices to mitigate and adapt to climate change. Journal of Soil and Water Conservation, 66(4), 118A-129A. Available at: https://doi.org/10.2489/jswc.66.4.118a.
Gamouna, M., Pattonb, B., & Hanchi, B. (2015). Assessment of vegetation response to grazing management in arid rangelands of southern Tunisia. International Journal of Biodiversity Science, Ecosystem Services & Management, 1(2), 106-113.
Garland, G., Hoffman, M. T., & Todd, S. W. (1999). Chapter 6: Soil degradation. (1999). (In Hoffman M.T., S.W. Todd, Z. Ntshona & S.D. Turner. A national review of land degradation in South Africa.) (pp. 69-107). Pretoria: DEAT.
Hall, R., & Cousins, B. (2013). Livestock and the rangeland commons in South Africa's land and agrarian reform. African Journal of Range & Forage Science, 30(1-2), 11-15. Available at: https://doi.org/10.2989/10220119.2013.768704.
Hoffman, M., Todd, S., Ntshona, Z., & Turner, S. (1999). Land degradation in South Africa. Claremont, Pretoria, SA: National Botanical Institute.
Hoffman, M. T., & Todd, S. W. (1999). Chapter 7: Vegetation degradation (1999). (In Hoffman M.T., S.W. Todd, Z. Ntshona & S.D. Turner. A national review of land degradation in South Africa.) (pp. 108-161). Pretoria: DEAT.
Jordaan, F. P., Van Rooyen, J. N., & Strydom, W. S. (2019). The effect of land-use on the species composition and rangeland condition in the Molopo District of the North West Province, South Africa. (2019). Modern Agricultural Science and Technology, 5(5), 29-42. Available at: 10.15341/mast(2375-9402)/03.05.2019/004.
Kelly, R., & McNeill, L. (1980). Tests of two methods for determining herbaceous yield and botanical composition. Proceedings of the Annual Congresses of the Grassland Society of Southern Africa, 15(1), 167-171. Available at: https://doi.org/10.1080/00725560.1980.9648906.
Kirkman, K. P. (1999). Impact of stocking rate, livestock type and livestock movement on sustainable utilisation of sourveld. PhD Thesis, University of Natal, Pietermaritzburg.
Low, A. B., & Rebelo, T. (1998). Vegetation of South Africa, Leshoto, and Swaziland. Pretoria: Department of Environmental Affairs and Tourism.
Mangold, S., Kalule-Sabiti, M., & Walmsley, J. (2002). State of the environment report (pp. 210). North West Department of Agriculture, Conservation and Environment. Mzuri Consultants, Pretoria, South Africa.
Mannetje, L., & Haydock, K. (1963). The dry-weight-rank method for the botanical analysis of pasture. Grass and Forage Science, 18(4), 268-275. Available at: https://doi.org/10.1111/j.1365-2494.1963.tb00362.x.
MEA Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: Synthesis. Washington, DC: Island Press.
Mucina, L., & Rutherford, M. C. (2006). The vegetation of South Africa, Lesotho and Swaziland. Pretoria: South African National Biodiversity Institute.
North West Department of Rural Environment and Agricultural Development. (2014). North West environment outlook report 2013 (pp. 139). Mahikeng: North West Provincial Government.
NWREAD (North West Department of Rural Environment and Agricultural Development). (2014). North West environment outlook report 2013. Mahikeng: North West Provincial Government.
O'Connor, T. G., Kuyler, P., Kirkman, K. P., & Corcoran, B. (2010). Which grazing management practices are most appropriate for maintaining biodiversity in South African Grassland? African Journal of Range & Forage Science, 27(2), 67-76. Available at: 10.2989/10220119.2010.502646.
Palmer, A. R., & Bennett, J. E. (2013). Degradation of communal rangelands in South Africa: Towards an improved understanding to inform policy. African Journal of Range & Forage Science, 30(1-2), 57-63. Available at: https://doi.org/10.2989/10220119.2013.779596.
Peden, M. (2005). Tackling'the most avoided issue': Communal rangeland management in KwaZulu-Natal, South Africa. African Journal of Range and Forage Science, 22(3), 167-175. Available at: https://doi.org/10.2989/10220110509485876.
Ragab, R., & Prudhomme, C. (2002). Soil and water: Climate change and water resources management in arid and semi-arid regions: Prospective and challenges for the 21st century. Biosystems Engineering, 81(1), 3-34. Available at: 10.1006/bioe.2001.0013.
Scogings, P., De Bruyn, T., & Vetter, S. (1999). Grazing into the future: Policy making for South African communal rangelands. Development Southern Africa, 16(3), 403-414. Available at: https://doi.org/10.1080/03768359908440088.
Smet, M., & Ward, D. (2005). A comparison of the effects of different rangeland management systems on plant species composition, diversity and vegetation structure in a semi-arid savanna. African Journal of Range and Forage Science, 22(1), 59-71. Available at: https://doi.org/10.2989/10220110509485862.
Stats, S. (2020). Census of commercial agriculture of the North West Province. Results Presentation via Microsoft Teams.
Teague, R. (2017). Managing grazing to restore soil health and farm livelihoods. Paper presented at the Presentation at the Forages and Pastures Symposium: Cover Crops in Livestock Production: Whole-system Approach held at the 2017 ASAS-CSAS Annual Meeting, July 11, 2017, Baltimore, Maryland.
Todd, S., & Hoffman, M. (2000). Correlates of stocking rate and overgrazing in the Leliefontein Communal Reserve, central Namaqualand. African Journal of Range and Forage Science, 17(1-3), 36-45.
Van Oudtshoorn, F. (2012). Guide to grasses of Southern Africa (pp. 288). Queenswood, Pretoria. SA: Briza Publications.
Vetter, S. (2013). Development and sustainable management of rangeland commons–aligning policy with the realities of South Africa's rural landscape. African Journal of Range & Forage Science, 30(1-2), 1-9. Available at: https://doi.org/10.2989/10220119.2012.750628.
DOI: 10.18488/journal.70.2020.74.267.274
Bishwajit, G., Razib, B., & Sharmistha, G. (2014). Reviewing the status of agricultural production in Bangladesh from a food security perspective. Russian Journal of Agricultural and Socio-Economic Sciences, 25(1), 19-27.
CEGIS. (2012). Master plan of haor area (Vol. 1). Summary Report. Bangladesh Haor and Wetland Development Board (BHWDB), Ministry of Water Resources, Government of the People's Republic of Bangladesh.
Coughenour, M., Reid, R., & Thornton, P. (2000). The savanna model. Washington, D.C: Future Harvest.
CWBMP (Coastal and Wetland Biodiversity Management Project). (2005). Strategic aspects of plant biodiversity management in Hakaluki Haor, Department of environment. Government of the People's Republic of Bangladesh.
FAO. (2008). Report of the fao expert workshop on the use of wild fish and/or other aquatic species as feed in aquaculture and its implications to food security and poverty alleviation,” Kochi, India, 16–18 November 2007. FAO Fisheries Report No. 867, Rome.
Houghton, R. A. (1994). The worldwide extent of land-use change. BioScience, 44(5), 305-313.
Huda, M. (2004). Experience with modern and hybrid rice varieties in haor ecosystem: Emerging technologies for sustainable rice production. Paper presented at the Twentieth National Workshop on Rice Research and Extension in Bangladesh. Bangladesh Rice Research Institute. Gazipur-1701, 19-21 April 2004.
Mas, J.-F., Velázquez, A., Díaz-Gallegos, J. R., Mayorga-Saucedo, R., Alcántara, C., Bocco, G., . . . Pérez-Vega, A. (2004). Assessing land use/cover changes: A nationwide multidate spatial database for Mexico. International Journal of Applied Earth Observation and Geoinformation, 5(4), 249-261. Available at: 10.1016/j.jag.2004.06.002.
Rana, M. P., Sohel, M. S. I., Akhter, S., & Alam, M. S. (2009). Haor based livelihood dependency of a rural community: A study on Hakalukihaor in Bangladesh. Proceedings of the Pakistan Academy of Sciences, 47(1), 1-10.
Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Kinzig, A. (2000). Global biodiversity scenarios for the year 2100. Science, 287(5459), 1770-1774.
SEMP. (2005). Rapid internal evaluation of the community based haor and floodplain resource management project (Draft Final Report). Dhaka: IUCN-Bangladesh.
United Nations Environment Programme (UNEP). (2009). Caribbean environment outlook.
World Bank. (2010). World development report 2010: Development and climate change. Washington, DC: World Bank.
Zhao, G., Lin, G., & Warner, T. (2004). Using thematic mapper data for change detection and sustainable use of cultivated land: A case study in the Yellow River delta, China. International Journal of Remote Sensing, 25(13), 2509-2522.
DOI: 10.18488/journal.70.2020.74.255.266
Stephen Taulu , Davis M. Lungu , Philemon H. Sohati
Abebe, F., Tefera, T., Mugo, S., Beyene, Y., & Vidal, S. (2009). Resistance of maize varieties to the maize weevil Sitophilus zeamais (Motsch.)(Coleoptera: Curculionidae). African Journal of Biotechnology, 8(21), 5937-5943.Available at: https://doi.org/10.5897/ajb09.821.
Arnason, T., Conilth de Beyssac, B., Philogene, B. J. R., Bervinson, D., Serratos, J. A., & Mihm, J. A. (1997). Mechanisms of resistance in maize grain to the maize weevil and the larger grain borer. In Mihm, J.A (Ed.), Insect Resistant maize - recent advances and utilization. Paper presented at the International Symposium., Mexico City. 27 Dec -3 Dec 1994. CIMMYT, Mexico City.
ASARECA–TUUSI. (2009). Drought and low-N torelant maize germplasm and varieties– inbred lines, populations, OPVs, Hybrids.
Barbano, D. M., Lynch, J. M., & Fleming, J. R. (1991). Direct and indirect determination of true protein content of milk by Kjeldahl analysis: Collaborative study. Journal of the Association of Official Analytical Chemists, 74(2), 281-288.Available at: https://doi.org/10.1093/jaoac/74.2.281.
Bekele, J., & Hassanali, A. (2001). Blend effects in the toxicity of the essential oil constituents of ocimum kilimandscharicum and Ocimum kenyense (Labiateae) on two post-harvest insect pests. Phytochemistry, 57(3), 385-391.Available at: https://doi.org/10.1016/s0031-9422(01)00067-x.
Bosque-Perez, N. A., & Buddenhagen, I. W. (1992). The development of host- plant resistance to insect pests: Outlook for the tropics. In: Menken, S.B.J., et al. (Ed.). Paper presented at the 8th International Symposium. Insect-pest Relationships. Kluwer Academic Publishers, Dordrech.
Caswell, G. H. (1962). Agricultural entomology in the tropics (pp. 40 -76). London: Edward Arnold.
Chapman, R. (2000). Entomology in the twentieth century. Annual Review of Entomology, 45(1), 261-285.
CIMMYT. (2001). Maize research Highlights 1999-2000. International maize and wheat improvement centre. Mexico: CIMMYT.
Classen, D., Arnason, J., Serratos, J., Lambert, J., Nozzolillo, C., & Philogene, B. (1990). Correlation of phenolic acid content of maize to resistance to Sitophilus zeamais, the maize weevil, in CIMMYT'S collections. Journal of Chemical Ecology, 16(2), 301-315.
Derera, J., Pixley, K., & Giga, D. (2001). Resistance of maize to the maize weevil: I. Antibiosis. African Crop Science Journal, 9(2), 431-440.
Dobie, P. (1974). The laboratory assessment of the inherent susceptibility of maize varieties to post-harvest infestation by Sitophilus zeamais Motsch. (Coleoptera, Curculionidae). Journal of Stored Products Research, 10(3-4), 183-197.Available at: https://doi.org/10.1016/0022-474x(74)90006-x.
Dobie, P. (1977). The laboratory assessment of the inherent susceptibility of maize varieties to post-harvest infestation by sitophilus zeamais motsch. Coleoptera, Curculionidae. Journal of Stored Products Research, 10(3-4), 183-197.Available at: https://doi.org/10.1016/0022-474x(74)90006-x.
FAO. (1991). Maize post-harvest operations. Rome: FAO.
García‐Lara, S., Bergvinson, D. J., Burt, A. J., Ramputh, A. I., Díaz‐Pontones, D. M., & Arnason, J. T. (2004). The role of pericarp cell wall components in maize weevil resistance. Crop Science, 44(5), 1546-1552.Available at: https://doi.org/10.2135/cropsci2004.1546.
Gwinner, J., Harnisch, R., & Muck, O. (1996). Manual on the prevention of post-harvest seed losses, post-harvest project (pp. 294-295). Hamburg, FRG: GTZ, D-2000.
Hallauer, A. R., & Miranda, J. B. (1988). Quantitative genetics in maize breeding Iowa state (pp. 49-52). Ames: University Press.
Kamanula, J., Sileshi, G. W., Belmain, S. R., Sola, P., Mvumi, B. M., Nyirenda, G. K., . . . Stevenson, P. C. (2011). Farmers' insect pest management practices and pesticidal plant use in the protection of stored maize and beans in Southern Africa. International Journal of Pest Management, 57(1), 41-49.Available at: https://doi.org/10.1080/09670874.2010.522264.
Keba, T., & Waktole, S. (2013). Differential resistance of maize varieties to maize weevil (Sitophilus zeamais Motschulsky) (Coleoptera: Curculionidae) under laboratory conditions. Journal of Entomology, 10(1), 1-12.Available at: https://doi.org/10.3923/je.2013.1.12.
Kossou, D. K., Mareck, J. H., & Bosque-Perez, N. (1993). Comparison of improved and local maize varieties in the republic of Benin with emphasis on susceptibility to sitophilus zeamais motschulsky. Journal of Stored Products Research, 29(4), 333-343.
Makate, N. (2010). The susceptibility of different maize varieties to post harvest infestation by Sitophilus zeamais (Motsch) (Coleoptera: Curculionidae). Scientific Research Essay, 5030-5034.
Makkar, H. P. S. (2003). Quantification of Tannis in tree and shrub foliage, laboratory manual. Vienna, Austria: Kluwer Academic Publishers.
Pixley, K. (1997). CIMMYT Mid-altitude maize breeding programme (Vol. 97, pp. 7-13). CIMMYT-Zimbabwe Annual Research Report, 1996/97.
Sen, S., Mukhopadhyay, S., Wetzel, J., & Biswas, T. K. (1994). Characterization of the mitochondrial DNA polymerase from Saccharomyces cerevisiae. Acta Biochimica Polonica, 41(1), 79-86.
Serratos, J. A., Blanco-Labra, A., Arnason, J. T., & Mihm, J. A. (1997). Genetics of maize grain resistance to maize weevil. In Mihm J.A. Insect resistant maize: Recent advances and utilization. Paper presented at the Proceedings of an International Symposium, 27 Nov – 3 Dec, 1994.
Serratos, J., Arnason., J., Baum, B., Gale, J., Lambert, J., Bergvinson, D., . . . Jewell, D. (1993). Variation in resistance of mexican landraces of maize to maize weevil Sitophilus zeamais, in relation to taxonomic and biochemical parameters. Euphytica, 74(3), 227-236.
Siwale, J., Mbata, K., McRobert, J., & Lungu, D. (2007). Comparative resistance of improved maize genotypes and landraces to maize weevil. African Crop Science Journal, 17, 1-16.
Tongjura, J. D. C., Amuga, G. A., & Mafuyai, H. B. (2010). Laboratory assessment of the susceptability of some varieties of Zea mays infested with Sitophilus zeamais, Motsch. Coleoptera, Curculionidae in Jos, Plateau State, Nigeria. Science World Journal, 5(2).Available at: https://doi.org/10.4314/swj.v5i2.61514.
DOI: 10.18488/journal.70.2020.74.244.254
Abderrahmane, K., & Lahcen, E. (2015). Insecticidal effect of plant extracts on aphids of watermelon. Journal of Biology, Agriculture and Healthcare, 5(3), 173–179.
Abong’o, D., Wandiga, S., & Jumba, I. (2018). Occurrence and distribution of organochlorine pesticide residue levels in water, sediment and aquatic weeds in the Nyando River catchment, Lake Victoria, Kenya. African Journal of Aquatic Science, 43(3), 255-270.
Achiri, D., Akotsen-Mensah, C., & Afreh-Nuamah, K. (2017). Principal component analysis of some pesticides handling practices of small scale vegetable farmers in rural and urban districts in Ghana. Asian Research Journal of Agriculture, 4(3), 1 – 7.
Alao, F., Adebayo, T., & Olaniran, O. (2016). Population density of insect pests associated with watermelon (Citrullus lanatus Thunb) in southern guinea savanna zone, Ogbomoso. Journal of Entomology and Zoology Studies, 4(4), 257-260.
Balliu, A., & Sallaku, G. (2017). Early production of melon, watermelon and squashes in low tunnels. Good Agricultural Practices for greenhouse vegetable production in the South East European countries (pp. 341-351).
Brittain, C., Vighi, M., Bommarco, R., Settele, J., & Potts, S. (2010). Impacts of a pesticide on pollinator species richness at different spatial scales. Basic and Applied Ecology, 11(2), 106-115. Available at: https://doi.org/10.1016/j.baae.2009.11.007.
CIA (Central Intelligence Agency). (2017). Data on youth unemployment and driving factors in Kenya. USA: World Facts, CIA.
Dalla, V. F. (2012). Exploring opportunities and constrains for young agro enterpreneurs in Africa. Paper presented at the Conference. FAO Rome.
Dively, G. P., Embrey, M. S., Kamel, A., Hawthorne, D. J., & Pettis, J. S. (2015). Assessment of chronic sublethal effects of imidacloprid on honey bee colony health. PloS One, 10(3), e0118748. Available at: https://doi.org/10.1371/journal.pone.0126043.
Dube, J., Ddamulira, G., & Maphosa, M. (2020). Watermelon production in Africa: Challenges and opportunities. International Journal of Vegetable Science, 1-9. Available at: https://doi.org/10.1080/19315260.2020.1716128.
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., & West, P. C. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337-342.
GOK. (2016). National land use policy. Physical planning department. Nairobi: Ministry of Lands and Physical Planning.
Googgle Maps. (2018). Retrieved from https://www.google.com .
Greenlife. (2020). Retrieved from https://www.greenlife.co.ke .
Horticultural Crops Directorate (HCD). (2016). Validation report 2013-2014. Nairobi: Kenya National Bureau of Statistics.
Horticultural Crops Directorate (HCD). (2018). Validation report 2015-2016. Nairobi: Kenya National Bureau of Statistics.
International Labour Organization (ILO). (2010). Code of practice on safety and Health in agriculture. Geneva: International Labour Organization.
Isaac, M., & Kibera, F. (2016). The influence of farmer characteristics on performance of commercial farmers in Kiambu County, Kenya. European Journal of Business and Social Sciences, 5(3), 63-78.
Keinath, A., Wintermantel, W., & Zitter, T. (2017). Compendium of cucurbit diseases and Pests. St. Paul, MN: American Phytopathological Society.
Kenya Meteriological Department. (2016). World weather information service – Embu: World Meteorological Organization.
Kenya Plant Health Inspectorate Service (KEPHIS). (2018). Annual Report and Financial Statement, Nairobi, Kenya.
Kiplimo, L. B., & Ngeno, V. (2016). Understanding the effect of land fragmentation on farm level efficiency: An application of quantile regression-based thick frontier approach to maize production in Kenya. Paper presented at the 5th International Conference of the African Association of Agricultural Economists, September 23-26, 2016, Addis Ababa, Ethiopia.
Kisaka, M. O., Mucheru-Muna, M., F. K, Ngetich, F. K., Mugwe, J. N., Mugendi, D., & Mairura, F. F. (2015). Rainfall variability, drought characterization, and efficacy of rainfall data reconstruction: Case of Eastern Kenya: Advances in Meteorology; Hindawi Publishing Corporation.
KNBS (Kenya National Bureau of Statistics). (2015). Statistical abstract. Nairobi: KNBS.
KNBS Kenya National Bureau of Statistics - Economic Survey. (2019). Retrieved from: https://www.knbs.or.ke/download/economic-survey-2019/ .
Lilly, V. (2013). Watermelon production in Tamilnadu-at a glance. Cultivation Patterns, Health Benefits, Watermelon: Indian Journal of Applied Research, 3(6).
Mulema, A. A., Jogo, W., Damtew, E., Mekonnen, K., & Thorne, P. (2019). Women farmers’ participation in the agricultural research process: Implications for agricultural sustainability in Ethiopia. International Journal of Agricultural Sustainability, 17(2), 127-145. Available at: https://doi.org/10.1080/14735903.2019.1569578.
Muraoka, R., Jin, S., & Jayne, T. S. (2018). Land access, land rental and food security: Evidence from Kenya. Land use Policy, 70, 611-622.
Murimi, E. K., Njeru, L., Gichimu, B., & Ndirangu, S. N. (2019). Effects of urban expansion on agricultural resources: A case study of Embu Town in Kenya. Asian Journal of Agricultural Extension, Economics & Sociology, 33(4), 1-11.
Mwaura, G. M. (2015). Self-making green livelihoods among educated youth in contemporary Kenya. Paper presented at the Yorkshire African Studies Conference, 19th may, 2015, University of Sheffield.
Namdari, M. (2011). Energy use and cost analysis of watermelon production under different farming technologies in Iran. Karaj, Iran: Agriculture Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran.
Ndirangu, S. N. (2017). An evaluation of the effect of land fragmentation and agro-ecological zones on food security and farm efficiency: The case of Embu county in Kenya. PhD Thesis University of Nairobi
Njeru, M. K., Mutegi, J. K., & Muraya, M. M. (2020). Eco-friendly farming practices and the intensity of their adoption in the agroecosystems of Embu County, Kenya. African Journal of Biological Sciences, 2(1), 28-38. Available at: https://doi.org/10.33472/afjbs.2.1.2020.28-38.
Njeru., L. K., & Mwangi, J. G. (2015). Influence of youth access to farm products markets on their participation in agriculture in Kajiado North Sub-county. International Journal of Agricultural Extension and Rural Development Studies, 2(2), 10-18.
Nyakundi, W. O., Magoma, G., Ochora, J., & Nyende, A. B. (2017). A survey of pesticide use and application patterns among farmers: A case study from selected horticultural farms in rift valley and central Provinces, Kenya. Nairobi, Kenya: Institute pf Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology.
Oluwasogo, D. O. (2015). Analysis of factors affecting watermelon. Science, Technology and Arts Research Journal, 4(2), 324-329. Available at: 10.4314/star.v4i2.45.
Research Solutions Africa. (2017). Study of the mapping of distributors of fruits and vegetables in Kenya; Main Report. Nairobi: Embassy of the Kingdom of the Netherlands.
Route to Food. (2019). Pesticides in Kenya: Why our health, environment and food security are at stake. Retrieve from www.routetofood.org .
Said, E. M., & Fatiha, H. (2018). Genotypic variability in fruits characters of Moroccan watermelon cultivars (Citrullus lanatus) cultivars under well and limited wateredconditions. Horticulture International Journal, 2, 378–381. Available at: 10.15406/hij.2018.02.00080.
Tange, D. A. (2019). Comparative studies on watermelon production in the North West and South West Regions of Cameroon: A rural and a peri-urban experience. IOSR Journal of Agriculture and Veterinary Science, 12(4), 55-68. Available at: 10.9790/2380-1204015568.
Tridge. (2020). Seasonal market report. A comprehensive market update on agricultural products currently in the key harvest season. Watermelon, Kenya, April 2020. Retrieved from https://www.tridge.com/intelligences/watermelon/KE .
Tsimbiri, P. F., Moturi, W. N., Sawe, J., Henley, P., & Bend, J. R. (2015). Health impact of pesticides on residents and horticultural workers in the Lake Naivasha Region, Kenya. Occupational Disease and Environmental Medicine, 3, 24-34. Available at: 10.4236/odem.2015.32004.
United Nations (UN). (2017). Globally harmonized system of classification and labelling of chemicals (GHS) (7th ed.). New York: UN.
USAID. (2011). Gender equality and female empowerment policy March 2012 Washington, DC. Retrieved from: https://www.usaid.gov/sites/default/files/documents/1865/GenderEqualityPolicy_0.pdf .
Valk, & Koomen. (2012). Aspects determining the risk of pesticides to wild bees: Risk profiles for focal crops on three continents. Rome: Pollination Services for Sustainable Agriculture - Field Manuals. FAO.
Whitehorn, P. R., O’connor, S., Wackers, F. L., & Goulson, D. (2012). Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science, 336(6079), 351-352. Available at: https://doi.org/10.1126/science.1215025.
Winfree, R. (2008). Pollinator-dependent crops: An increasingly risky business. Current Biology, 18(20), R968-R969
DOI: 10.18488/journal.70.2020.74.234.243
Azad, A. K., Miaruddin, M., Ohab, M. A., Sheikh, M. H. R., Nag, B. L., & Rahman, M. H. H. (2020). Agricultural technology hatboy (9th ed.). Gazipur-1801, Bangladesh: Bangladesh Agricultural Research Institute.
Bakhsh, A., Gafoor, A., Zubair, M., & Iqbal, S. M. (1991). Genotype environment interaction for grain yield in lentil. Pakistan Journal of Agricultural Research, 12(2), 102-105.
Bakr, M. A., Rahman, M. L., & Miah, M. D. (1997). Plant Protection of pulses-progress and prospect. Paper presented at the Paper Presented in National workshop on pulses. April 7-8, 1997, BARC, Farm Gate, Dhaka. 1991.
Baksh, M., Rossi, F., Momin, M., Hajong, P., & Tiwari, T. (2017). Economics of maize grain storage at household level in Chuadanga district of Bangladesh. Bangladesh Journal of Agricultural Research, 42(3), 549-561. Available at: https://doi.org/10.3329/bjar.v42i3.34514.
BBS. (2019). Yearbook of agricultural statistics, Bangladesh Bureau of Statistics. Statistics and Informatics Division (SID), Ministry of Planning, Government of the People’s Republic of Bangladesh. Retrieved from: http://www.bbs.gov.bd/site/page/3e838eb6-30a2-4709-be85-40484b0c16c6/ .
Bhatty, R. (1988). Composition and quality of lentil (Lens culinaris Medik): A review. Canadian Institute of Food Science and Technology Journal, 21(2), 144-160. Available at: https://doi.org/10.1016/s0315-5463(88)70770-1.
Erskine, W., & Witecombe, J. R. (1984). Lentil germplasm catalog (pp. 363). Aleppo, Syria: ICARDA.
GTZ Value Links. (2008). Value links manual. The methodology of value chain promotion. Germany: GTZ.
Hajong, P., Moniruzzaman, M., Mia, M. I. A., & Rahman, M. M. (2014). Storage system of potato in Bangladesh. Universal Journal of Agricultural Research, 2(1), 11-17. Available at: 10.13189/ ujar. 2014.020102.
Hajong, P., Mondal, S., Sikder, B., Paul, S. K., & Saha, D. (2016). Existing value chain assessment of date palm in selected areas of greater jessore district. Journal Sylhet Agricultural University, 3(1), 53-58.
Hajong, P., Sikder, B., Mondal, S., & Islam, M. (2018). Adoption and profitability of summer tomato cultivation in Jashore district of Bangladesh. Bangladesh Journal of Agricultural Research, 43(4), 575-585. Available at: https://doi.org/10.3329/bjar.v43i4.39154.
Kaplinsky, R., & Morris, M. (2001). A handbook for value-chain research. Retrieved from: http://www.ids.ac.uk/ids/global/pdfs/VchNov01.pdf .
Kohls, R. L., & Uhl, J. N. (2005). Marketing of agricultural products (9th ed.). New York: Macmillan Publishing co. Inc.
Matin, M., Islam, Q., & Huque, S. (2018). Profitability of lentil cultivation in some selected sites of Bangladesh. Bangladesh Journal of Agricultural Research, 43(1), 135-147. Available at: https://doi.org/10.3329/bjar.v43i1.36187.
Meera, K., Singh, S. P., Rahaman, S. M., Bairwa, S. L., & Meena, L. K. (2018). Value chain analysis of major pulses in Bihar: A situation analysis. International Journal of Current Microbiology and Applied Science, 6, 2832-2842.
Miah, A. A., & Rahman, M. (1991). Agronomy of lentil in Bangladesh. Paper presented at the Proceedings of the Seminar of Lentil in South Asia, 11-15 March 1991, New Delhi, India.
Rahman, M., Hossain, M., Sarker, M., & Bakr, M. (2012). Adoption and profitability of BARI lentil varieties in some selected areas of Bangladesh. Bangladesh Journal of Agricultural Research, 37(4), 593-606. Available at: https://doi.org/10.3329/bjar.v37i4.14384.
Tithi, S. M., & Barmon, B. K. (2018). Comparative advantages of lentil (Lens culinaris) and mustard (Brassica nigra L.) production and their profitability in a selected district of Bangladesh. The Agriculturists, 16(1), 21-33.
Uddin, M. J., Rashid, M. S. U., & Begum, M. E. A. (2020). Adoption impact of improved cowpea variety in selected areas of chattogram district of Bangladesh. International Journal of Sustainable Agricultural Research, 7(1), 44-55. Available at: 10.18488/journal.70.2020.71.44.55.
USAID/Nepal. (2011). Value chain/ market analysis of the lentil sub-sector in Nepal. Nepal: United States Agency for International Development General Development Office Kathmandu.
DOI: 10.18488/journal.70.2020.74.228.233
Abdi-Hachesoo, B., Talebi, A., & Asri-Rezaei, S. (2011). Comparative study on blood profiles of indigenous and Ross-308 broiler breeders. Global Veterinaria, 7(3), 238-241.
Aberra, M. (2011). Performance and physiological responses of naked-neck chickens and their F1 crosses with commercial layer breeds to long-term high ambient temperature. Global Veterinaria, 6(3), 272-280. Available at: https://doi.org/10.1016/j.livsci.2011.06.007.
Bhuiyan, A. K. F. H. (2011). Implementation of national livestock development policy (2007) and national poultry development policy (2008): Impact on smallholder livestock rearers. Keynote paper presented at the South Asia Pro Poor Livestock Policy Programme (SAPPLP)-BRAC workshop held at BRAC Centre Inn, Dhaka.
Chowdhury, S. (2013). Family poultry production in Bangladesh: Is it meaningful or an aimless journey? World's Poultry Science Journal, 69(3), 649-665. Available at: https://doi.org/10.1017/s0043933913000652.
Dolberg, F. (2008). Bangladesh poultry sector country review. Rome: FAO Animal Production and Health Division.
FAO. (1997). Special programme for food security. Diversification component. Draft Report, Rome.
Hossain, M., Nishibori, M., & Islam, M. (2012). Meat yield from broiler, indigenous naked neck and full feathered chicken of Bangladesh. The Agriculturists, 10(2), 55-67. Available at: https://doi.org/10.3329/agric.v10i2.13142.
Islam, M., & Nishibori, M. (2009). Indigenous naked neck chicken: A valuable genetic resource for Bangladesh. World's Poultry Science Journal, 65(1), 125-138. Available at: https://doi.org/10.1017/s0043933909000010.
Kalita, D., Sultana, R., Roy, M., & Bharali, K. (2018). Comparative study of certain biochemical profile of broiler and indigenous chicken of Assam. Approaches in Poultry, Dairy & Veterinary Sciences, 2(4), 175-177. Available at: https://doi.org/10.31031/apdv.2018.02.000544.
Kalita., N., & Bhakat, C. (2011). Growth of female kids under different housing systems. Indian Veterinary Journal, 88(7), 59-61.
Ladokun, A., Yakubu, A., Otite, J., Omeje, J., Sokunbi, O., & Onyeji, E. (2008). Haematological and serum biochemical indices of naked neck and normally feathered Nigerian indigenous chickens in a sub humid tropical environment. International Journal of Poultry Science, 7(1), 55-58. Available at: https://doi.org/10.3923/ijps.2008.55.58.
Langhout, P. (2000). New additives for broiler chickens: Feed Mixture.
Meluzzi, A., Primiceri, G., Giordani, R., & Fabris, G. (1992). Determination of blood constituents reference values in broilers. Poultry Science, 71(2), 337-345.
Miah, M. Y., Chowdhury, S. D., & Bhuiyan, A. K. F. H. (2016). Effect of different dietary levels of energy on the growth performance and meat yield of indigenous chicken reared in confinement under the rural condition of Bangladesh. International Journal of Animal Resources, 1(1), 53-60.
Pampori, Z., & Iqbal, S. (2007). Haematology, serum chemistry and electrocardiographic evaluation in native chicken of Kashmir. International Journal of Poultry Science, 6(8), 578-582. Available at: https://doi.org/10.3923/ijps.2007.578.582.
Simaraks, S., Chinrasri, O., & Aengwanich, W. (2004). Hematological, electrolyte and serum biochemical values of the Thai indigenous chickens (Gallus domesticus) in northeastern, Thailand. Songklanakarin Journal of Science and Technology, 26(3), 425-430. Available at: https://doi.org/10.3923/jbs.2007.689.692.
Singh, D. P. (2001). Assel in India (pp. 96-100). In Proceeding of a Seminar on Appropriate Poultry for Adverse Environments, Hyderabad, India.
Sirri, F., Castellini, C., Roncarati, A., Franchini, A., & Meluzzi, A. (2010). Effect of feeding and genotype on the lipid profile of organic chicken meat. European Journal of lipid Science and Technology, 112(9), 994-1002. Available at: https://doi.org/10.1002/ejlt.200900204.
Talebi, A., Asri-Rezaei, S., Rozeh-Chai, R., & Sahraei, R. (2005). Comparative studies on haematological values of broiler strains (Ross, Cobb, Arbor-acres and Arian). International Journal of Poultry Science, 4(8), 573-579. Available at: https://doi.org/10.3923/ijps.2005.573.579.
Tixier-Boichard, M., Bordas, A., & Rognon, X. (2009). Characterisation and monitoring of poultry genetic resources. World's Poultry Science Journal, 65(2), 272-285. Available at: https://doi.org/10.1017/s0043933909000245.
Younis, M. E., El-Edel, M. A., Nasr, S. M., Mahrous, U. E., & Aboghanima, M. M. (2016). Response of cobb and sasso broilers to feeding restriction and tryptophan supplementation. Alexandria Journal of Veterinary Sciences, 51(1), 127-134.
DOI: 10.18488/journal.70.2020.74.211.227
Abbaspour, H., Saeidi-Sar, S., Afshari, H., & Abdel-Wahhab, M. (2012). Tolerance of mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. Journal of Plant Physiology, 169(7), 704-709.
Abdel Latef, A. A. H., & Miransari, M. (2014). The role of arbuscular mycorrhizal fungi in alleviation of salt stress. In: Use of microbes for the alleviation of soil stresses, (Ed.) Miransari, M (pp. 23-38). New York: Springer Science Business Media.
Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126. Available at: 10.1016/s0076-6879(84)05016-3.
Afkhami, M. E., Rudgers, J. A., & Stachowicz, J. J. (2014). Multiple mutualist effects: Conflict and synergy in multispecies mutualisms. Ecology, 95(4), 833-844. Available at: https://doi.org/10.1890/13-1010.1.
Akhtar, M. S., Siddiqui, Z. A., & Wiemken, A. (2011). Arbuscular mycorrhizal fungi and rhizobium to control plant fungal diseases. In: Alternative farming systems, biotechnology, drought stress and ecological fertilization. 263-292.
Alguacil, M., Hernandez, J., Caravaca, F., Portillo, B., & Roldan, A. (2003). Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiologia Plantarum, 118(4), 562-570. Available at: https://doi.org/10.1034/j.1399-3054.2003.00149.x.
Allen, S. F., Grimshaw, H. F., & Rowl, A. B. (1984). Chemical analysis. In: Methods in plant ecology, (Eds) Moor, P.D. and Chapman, S.B (pp. 185-344). Oxford: Blackwell.
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. Available at: https://doi.org/10.1104/pp.24.1.1.
Aroca, R., Porcel, R., & Ruiz‐Lozano, J. M. (2007). How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytologist, 173(4), 808-816. Available at: https://doi.org/10.1111/j.1469-8137.2006.01961.x.
Bauer, J. T., Kleczewski, N. M., Bever, J. D., Clay, K., & Reynolds, H. L. (2012). Nitrogen-fixing bacteria, arbuscular mycorrhizal fungi, and the productivity and structure of prairie grassland communities. Oecologia, 170(4), 1089-1098. Available at: https://doi.org/10.1007/s00442-012-2363-3.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. Available at: https://doi.org/10.1016/0003-2697(76)90527-3.
Castillo, F. J., Penel, C., & Greppin, H. (1984). Peroxidase release induced by ozone in Sedum album leaves: Involvement of Ca2+. Plant Physiology, 74(4), 846-851. Available at: https://doi.org/10.1104/pp.74.4.846.
Chandrasekaran, M., Boughattas, S., Hu, S., Oh, S.-H., & Sa, T. (2014). A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza, 24(8), 611-625. Available at: https://doi.org/10.1007/s00572-014-0582-7.
Cicatelli, A., Lingua, G., Todeschini, V., Biondi, S., Torrigiani, P., & Castiglione, S. (2012). Arbuscular mycorrhizal fungi modulate the leaf transcriptome of a Populus alba L. clone grown on a zinc and copper-contaminated soil. Environmental and Experimental Botany, 75, 25-35. Available at: https://doi.org/10.1016/j.envexpbot.2011.08.012.
Clúa, J., Roda, C., Zanetti, M. E., & Blanco, F. A. (2018). Compatibility between legumes and rhizobia for the establishment of a successful nitrogen-fixing symbiosis. Genes, 9(3), 1-21. Available at: https://doi.org/10.3390/genes9030125.
Dalpé, Y., & Monreal, M. (2004). Arbuscular mycorrhiza inoculum to support sustainable cropping systems. Crop Management, 3(1), 1-11. Available at: https://doi.org/10.1094/cm-2004-0301-09-rv.
Dardanelli, M. S., de Cordoba, F. J. F., Espuny, M. R., Carvajal, M. A. R., Díaz, M. E. S., Serrano, A. M. G., . . . Megías, M. (2008). Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biology and Biochemistry, 40(11), 2713-2721. Available at: https://doi.org/10.1016/j.soilbio.2008.06.016.
Dhindsa, R. S., Plumb-Dhindsa, P., & Thorpe, T. A. (1981). Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32(1), 93-101. Available at: https://doi.org/10.1093/jxb/32.1.93.
Evelin, H., Giri, B., & Kapoor, R. (2012). Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza, 22(3), 203-217. Available at: https://doi.org/10.1007/s00572-011-0392-0.
Fellbaum, C. R., Gachomo, E. W., Beesetty, Y., Choudhari, S., Strahan, G. D., Pfeffer, P. E., . . . Bücking, H. (2012). Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences, 109(7), 2666-2671. Available at: https://doi.org/10.1073/pnas.1118650109.
Geng, L.-L., Shao, G.-X., Raymond, B., Wang, M.-L., Sun, X.-X., Shu, C.-L., & Zhang, J. (2018). Subterranean infestation by Holotrichia parallela larvae is associated with changes in the peanut (Arachis hypogaea L.) rhizosphere microbiome. Microbiological Research, 211, 13-20. Available at: https://doi.org/10.1016/j.micres.2018.02.008.
Ghosh, D., & Xu, J. (2014). Abiotic stress responses in plant roots: A proteomics perspective. Frontiers in Plant Science, 5, 6.
Gibson, K. E., Kobayashi, H., & Walker, G. C. (2008). Molecular determinants of a symbiotic chronic infection. Annual review of Genetics, 42, 413-441. Available at: https://doi.org/10.1146/annurev.genet.42.110807.091427.
Goss, M., & De Varennes, A. (2002). Soil disturbance reduces the efficacy of mycorrhizal associations for early soybean growth and N2 fixation. Soil Biology and Biochemistry, 34(8), 1167-1173. Available at: https://doi.org/10.1016/s0038-0717(02)00053-6.
Gould, K. S., & Lister, C. (2005). Flavonoid functions in plants. In: Flavonoids: Chemistry, biochemistry, and applications (eds.) Anderson, O.M. and Markham, K.R (pp. 397-441). Boca Raton: CRC.
Guether, M., Neuhäuser, B., Balestrini, R., Dynowski, M., Ludewig, U., & Bonfante, P. (2009). A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiology, 150(1), 73-83. Available at: https://doi.org/10.1104/pp.109.136390.
Habte, M., & Osorio, N. W. (2001). Arbuscular mycorrhizas: Producing and applying arbuscular mycorrhizal inoculum. Department of Tropical Plant and Soil Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii, Monoa.
Hajiboland, R., Aliasgharzadeh, N., Laiegh, S. F., & Poschenrieder, C. (2010). Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant and Soil, 331(1-2), 313-327. Available at: https://doi.org/10.1007/s11104-009-0255-z.
Hammer, E. C., Pallon, J., Wallander, H., & Olsson, P. A. (2011). Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMS Microbiology Ecology, 76(2), 236-244. Available at: https://doi.org/10.1111/j.1574-6941.2011.01043.x.
Hartree, E. F. (1957). Haematin compounds. In: Modern methods of plant analysis, (eds.) Paech, K. and Tracey, M.V. (pp. 197-245). Berlin: Springer-Verlag, Germany.
Hiscox, J., & Israelstam, G. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57(12), 1332-1334. Available at: https://doi.org/10.1139/b79-163.
Jackson, M. L. (1973). Soil chemical analysis (pp. 485). New Delhi: Printice Hall.
Jensen, E. S., Peoples, M. B., Boddey, R. M., Gresshoff, P. M., Hauggaard-Nielsen, H., Alves, B. J. R., & Morrison, M. J. (2012). Legumes for mitigation of climate change and feedstock in a bio-based economy – A review. Agronomy for Sustainable Development, 32, 329-364. Available at: doi.org/10.1007/s13593-011-0056-7.
Kapoor, R., Sharma, D., & Bhatnagar, A. (2008). Arbuscular mycorrhizae in micropropagation systems and their potential applications. Scientia Horticulturae, 116(3), 227-239. Available at: https://doi.org/10.1016/j.scienta.2008.02.002.
Khalil, H. A., Eissa, A. M., El-Shazly, S. M., & Nasr, A. M. A. (2011). Improved growth of salinity-stressed citrus after inoculation with mycorrhizal fungi. Scientia Horticulturae, 130(3), 624-632. Available at: https://doi.org/10.1016/j.scienta.2011.08.019.
Kothari, S., Marschner, H., & George, E. (1990). Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize. New Phytologist, 116(2), 303-311. Available at: https://doi.org/10.1111/j.1469-8137.1990.tb04718.x.
Krishna, G., Singh, B. K., Kim, E.-K., Morya, V. K., & Ramteke, P. W. (2015). Progress in genetic engineering of peanut (Arachis hypogaea L.)—A review. Plant Biotechnology Journal, 13(2), 147-162.
Leport, L., Turner, N. C., Davies, S., & Siddique, K. (2006). Variation in pod production and abortion among chickpea cultivars under terminal drought. European Journal of Agronomy, 24(3), 236-246. Available at: https://doi.org/10.1016/j.eja.2005.08.005.
Lindner, R. (1944). Rapid analytical methods for some of the more common inorganic constituents of plant tissues. Plant Physiology, 19(1), 76-89. Available at: https://doi.org/10.1104/pp.19.1.76.
Lucas, J. A., García-Cristobal, J., Bonilla, A., Ramos, B., & Gutierrez-Manero, J. (2014). Beneficial rhizobacteria from rice rhizosphere confers high protection against biotic and abiotic stress inducing systemic resistance in rice seedlings. Plant Physiology and Biochemistry, 82, 44-53. Available at: https://doi.org/10.1016/j.plaphy.2014.05.007.
McGonigle, T., Miller, M., Evans, D., Fairchild, G., & Swan, J. (1990). A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytologist, 115(3), 495-501. Available at: https://doi.org/10.1111/j.1469-8137.1990.tb00476.x.
Mehlich, A. (1953). Determination of P, Ca, Mg, K, Na and NH4. Short Test Methods Used in Soil Testing Division, Department of Agriculture, North Carolina Soil Testing Division, Raleigh, North Carolina.
Miransari, M. (2011). Soil microbes and plant fertilization. Applied Microbiology and Biotechnology, 92(5), 875-885. Available at: https://doi.org/10.1007/s00253-011-3521-y.
Mukherjee, A., & Ané, J.-M. (2011). Germinating spore exudates from arbuscular mycorrhizal fungi: Molecular and developmental responses in plants and their regulation by ethylene. Molecular Plant-Microbe Interactions, 24(2), 260-270. Available at: https://doi.org/10.1094/mpmi-06-10-0146.
Nelson, D. W., & Sommers, L. (1973). Determination of total nitrogen in plant material 1. Agronomy Journal, 65(1), 109-112.
Olsen, S. R., & Sommers, L. E. (1982). Phosphorus. In: Methods of soil analysis, Agron. No. 9, Part 2-Chemical and microbiological properties, (ed.) Page, A.L (2nd ed., pp. 403-430). Madison, Wisconsin, USA: American Society of Agronomy.
Parniske, M. (2008). Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nature Reviews Microbiology, 6(10), 763-775. Available at: https://doi.org/10.1038/nrmicro1987.
Patel, D., & Saraf, M. (2013). Influence of soil ameliorants and microflora on induction of antioxidant enzymes and growth promotion of Jatropha curcas L. under saline condition. European Journal of Soil Biology, 55, 47-54. Available at: https://doi.org/10.1016/j.ejsobi.2012.12.004.
Patreze, C. M., & Cordeiro, L. (2004). Nitrogen-fixing and vesicular–arbuscular mycorrhizal symbioses in some tropical legume trees of tribe Mimoseae. Forest Ecology and Management, 196(2-3), 275-285. Available at: https://doi.org/10.1016/j.foreco.2004.03.034.
Phillips, J. M., & Hayman, D. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1), 158-161. Available at: https://doi.org/10.1016/s0007-1536(70)80110-3.
Raupach, G. S., & Kloepper, J. W. (1998). Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology, 88(11), 1158-1164. Available at: https://doi.org/10.1094/phyto.1998.88.11.1158.
Rotaru, V., & Sinclair, T. R. (2009). Interactive influence of phosphorus and iron on nitrogen fixation by soybean. Environmental and Experimental Botany, 66(1), 94-99. Available at: https://doi.org/10.1016/j.envexpbot.2008.12.001.
Ruiz-Lozano, J. M., Porcel, R., Azcón, C., & Aroca, R. (2012). Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: New challenges in physiological and molecular studies. Journal of Experimental Botany, 63(11), 4033-4044. Available at: https://doi.org/10.1093/jxb/ers126.
Sakamoto, K., Ogiwara, N., & Kaji, T. (2013). Involvement of autoregulation in the interaction between rhizobial nodulation and AM fungal colonization in soybean roots. Biology and Fertility of Soils, 49(8), 1141-1152. Available at: https://doi.org/10.1007/s00374-013-0804-8.
Samal, K. C., & Rout, G. R. (2018). Genetic improvement of vegetables using transgenic technology. In: Genetic engineering of horticultural crops (pp. 193-224): Academic Press.
Sathiyabama, M., & Balasubramanian, R. (2018). Protection of groundnut plants from rust disease by application of glucan isolated from a biocontrol agent Acremonium obclavatum. International Journal of Biological Macromolecules, 116, 316-319. Available at: https://doi.org/10.1016/j.ijbiomac.2018.04.190.
Schüβler, A., & Walker, C. (2010). The glomeromycota: A species list with new families and genera. Edinburgh & Kew, UK, The Royal Botanic Garden; Munich, Germany: Botanische staatssammlung munich and oregon. USA: Oregon State University.
Senoo, K., Solaiman, M. Z., Kawaguchi, M., Imaizumi-Anraku, H., Akao, S., Tanaka, A., & Obata, H. (2000). Isolation of two different phenotypes of mycorrhizal mutants in the model legume plant lotus japonicus after EMS-treatment. Plant and Cell Physiology, 41(6), 726-732. Available at: https://doi.org/10.1093/pcp/41.6.726.
Sharma, K. K., & Bhatnagar-Mathur, P. (2006). Peanut (arachis hypogaea L.), In: Agrobacterium protocols. Methods in molecular biology, (ed.) wang, K (Vol. 343, pp. 347-358). New Jersey: Springer.
Sheng, M., Tang, M., Chen, H., Yang, B., Zhang, F., & Huang, Y. (2008). Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18(6-7), 287-296. Available at: https://doi.org/10.1007/s00572-008-0180-7.
Singh, P. K. (2012). Role of glomalin related soil protein produced by arbuscular mycorrhizal fungi: A review. Academic Research Journal of Agricultural Science, 2(3), 119-125.
Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis. San Diego, CA: Academic Press, Inc.
Smith, S. E., Facelli, E., Pope, S., & Smith, F. A. (2010). Plant performance in stressful environments: Interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant and Soil, 326(1-2), 3-20. Available at: https://doi.org/10.1007/s11104-009-9981-5.
Smith, S. E., Jakobsen, I., Grønlund, M., & Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology, 156(3), 1050-1057. Available at: https://doi.org/10.1104/pp.111.174581.
Takeda, N., Tsuzuki, S., Suzaki, T., Parniske, M., & Kawaguchi, M. (2013). CERBERUS and NSP1 of Lotus japonicus are common symbiosis genes that modulate arbuscular mycorrhiza development. Plant and Cell Physiology, 54(10), 1711-1723. Available at: https://doi.org/10.1093/pcp/pct114.
Thangella, P., Pasumarti, S., Pullakhandam, R., Geereddy, B., & Daggu, M. (2018). Differential expression of leaf proteins in four cultivars of peanut (arachis hypogaea L.) under water stress. 3 Biotech, 8(3), 157-157. Available at: https://doi.org/10.1007/s13205-018-1180-8.
Tian, C., Kasiborski, B., Koul, R., Lammers, P. J., Bücking, H., & Shachar-Hill, Y. (2010). Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: Gene characterization and the coordination of expression with nitrogen flux. Plant Physiology, 153(3), 1175-1187. Available at: https://doi.org/10.1104/pp.110.156430.
Van der Putten, W. H., Klironomos, J. N., & Wardle, D. A. (2007). Microbial ecology of biological invasions. The ISME Journal, 1(1), 28-37.
Walkley, A. (1947). A critical examination of a rapid method for determining organic carbon in soils—effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63(4), 251-264. Available at: https://doi.org/10.1097/00010694-194704000-00001.
Weatherley, P. (1950). Studies in the water relations of the cotton plant. I. The field measurement of water deficits in leaves. New Phytologist, 49(1), 81-97. Available at: https://doi.org/10.1111/j.1469-8137.1950.tb05146.x.
Wu, Q.-S., Zou, Y.-N., & He, X.-H. (2010). Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiologiae Plantarum, 32(2), 297-304. Available at: https://doi.org/10.1007/s11738-009-0407-z.
Xie, Z.-P., Staehelin, C., Vierheilig, H., Wiemken, A., Jabbouri, S., Broughton, W. J., . . . Boller, T. (1995). Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans. Plant Physiology, 108(4), 1519-1525. Available at: https://doi.org/10.1104/pp.108.4.1519.
Yol, E., Furat, S., Upadhyaya, H. D., & Uzun, B. (2018). Characterization of groundnut (Arachis hypogaea L.) collection using quantitative and qualitative traits in the Mediterranean Basin. Journal of Integrative Agriculture, 17(1), 63-75.
Zai, X., Qin, P., Wan, S., Zhao, F., Wang, G., Yan, D., & Zhou, J. (2007). Effects of arbuscular mycorrhizal fungi on the rooting and growth of beach plum (Prunus maritima) cuttings. The Journal of Horticultural Science and Biotechnology, 82(6), 863-866. Available at: ttps://doi.org/10.1080/14620316.2007.11512319.
Zhu, Y.-G., Smith, S. E., Barritt, A., & Smith, F. A. (2001). Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant and Soil, 237(2), 249-255.