THERMODYNAMICS PROPERTIES OF COPPER HALIDE ALLOY (CuBr$_{0.5}$Cl$_{0.5}$)

Elnaz Parham1 --- Ali Mokhtari2

1Department of Physics, Faculty of Science, Shahrekord University, Shahrekord, Iran

ABSTRACT

Ab initio density functional theory (DFT) has been used to investigate the thermal properties of the CuBr$_{0.5}$Cl$_{0.5}$ alloys over a wide range of temperature. Using the quasiharmonic approximation (QHA) for the some physical quantities of interest such as heat capacity at constant volume and entropy are calculated and discussed. The theoretical results show good agreement with the available experimental data for CuBr and CuCl. The present results show that symmetric and asymmetric structure of CuBr$_{0.5}$Cl$_{0.5}$ have a good agreement with the calculatingly value for heat capacity.

Keywords: DFT, PWSCF, Thermodynamics properties, CuBr$_{0.5}$Cl$_{0.5}$.

1. INTRODUCTION

During the last three decades, the CuX (X = Br, Cl and I) have been a subject of many theoretical and experimental studies. The CuX compounds are big direct gap semiconductors, which crystallise at ambient condition in the cubic NaCl structure, and posses 10 valence electrons instead of eight for common zinc-blend and wurtzite III-V and II-VI compounds. The copper halides are prototype materials for nonlinear optical experiments [1]. They found renewed interest because of the possibility of producing microcrystals [2]. As promising candidates for photosensitive and semiconducting materials, copper halides attract much attention and several theoretical and experimental results have been reported [3]. The copper halides CuBr and CuCl crystallize under ambient conditions in the zinc-blende structure. A closer look at the structural properties of I-VII semiconductor alloys made possible by more measurements [4] reveals, however, that these alloys form a complete solid solution. In 1998 the band structures of CuCl$_{1-x}$Br$_x$ [5], CuCl$_{1-x}$I$_x$ [6] and CuBr$_{1-x}$I$_x$ [7] alloys are used tight-binding (TB) theory within the virtual crystal approximation (VCA) studied. The miscibility of copper halides is studied by using a three-body potential [8]. The electronic structure and disorder effects in copper halides alloys are studied by using the full potential linearized augmented plane wave (FLAPW) method [9]. It is showed that X-ray diffraction patterns of CuBr$_{1-x}$I$_x$ crystals indicated a cubic zinc-blende
structure and is showed that the lattice parameter changed linearly without changes in the crystal structure [7]. In this paper we present a first principles study of the ground state and thermodynamic properties of CuBr$_{x}$Cl$_{1-x}$ compounds by employing plane wave pseudo-potential method and density-functional theory. The paper is organized as follows. In Section 2, we briefly review the computational method used. In Section 3, the result of our calculations are presented and discussed. Finally, a summary of the work will be given in Section 4.

2. METHODS

The present theoretical calculations are performed using the PWSCF software package [10]. During first-principles calculations, the exchange-correlation functional is treated with GGA Perdew–Wang 91 [11, 12], in which the expansion of the augmentation charges is required. The core-valence electron interaction is described via ultrasoft pseudopotential [13]. There are many possible atomic arrangements of the alloy for the eight atoms were showed in Fig 1. The unit cell contains four Cu atoms, two atoms of Cl and two atoms of Br, where the tetrahedral nearest neighbor environment of each Cl or Br atom is 4 Cu atoms in the symmetrical type that showed in Fig.1a and the Asymmetric type that showed in Fig.1b. The basis set is truncated to a kinetic energy cutoff of 36 Ry for Symmetrical type of alloy and a kinetic energy cutoff of 37 Ry for Asymmetric type. The Brillouin-zone integrations are performed using a 5×5×5 grid mesh of Monkhorst-Pack scheme for both. With QHA, a fourth-order finite strain equation of state (EOS) [14–17] is used to obtain the Helmholtz free energy $F(T,V)$ at various temperatures. From the Helmholtz free energy, several physical quantities of interest are obtained, which are as a function of temperature.

![Fig-1](image-url) Fig-1. Schematic picture of the possible atomic arrangements of Cu in the CuBr$_{0.5}$Cl$_{0.5}$ cubic supercell. (a) shows the symmetrical and (b) shows the Asymmetric type.

3. RESULTS AND DISCUSSION

3.1. Structural Properties

CuBr$_{0.5}$Cl$_{0.5}$ has two CsCl-type simple cubic structures with space group of F43m [18]. As shown in Fig 1, its unit cell has three kinds of atom with lattice constant $a=5.62\text{Å}$ for asymmetrical type and $a=5.61\text{Å}$ for symmetrical type. We first determine the ground-state
3.2. Thermodynamic Properties

The thermodynamic properties of CuBr\textsubscript{0.5}Cl\textsubscript{0.5} can be determined in detail by the entire phonon spectrum. The quasi-harmonic approximation can describe such properties quite satisfactorily. In the present work, the more explicit forms of the phonon contribution to the entropy \(S \), and constant-volume specific heat \(C_v \), at temperature \(T \), in the harmonic approximation per unit cell are given \[19\] as follows:

\[
C_v = 3nNk_B \int_0^{\omega_{max}} \frac{h\omega}{2k_BT} \cosh^2\left(\frac{h\omega}{2k_BT}\right) g(\omega)d\omega
\]

(1)

\[
S = 3nNk_B \int_0^{\omega_{max}} \frac{h\omega}{2k_BT} \coth\left(\frac{h\omega}{2k_BT}\right) \ln\left[2\sinh\left(\frac{h\omega}{2k_BT}\right)\right] g(\omega)d\omega
\]

(2)

Where \(k_B \) is the Boltzmann’s constant, \(h \) is the Planck’s constant, \(n \) is the number of atoms per unit cell, \(N \) is the number of unit cells, \(\omega \) is the phonon frequencies, \(\omega_{max} \) is the largest phonon frequency, and \(g(\omega) \) is the normalized phonon density of states.

The variation of entropy with temperature for CuBr\textsubscript{0.5}Cl\textsubscript{0.5} is given in Fig 3. Entropy is a measure for the disorder of the micro-particle in thermodynamic system. The change of entropy can determine whether a thermodynamic process is a reversible process. The lattice contribution to the \(C_v \) is calculated and shown in Fig 2. In the low-temperature limit, the specific heat exhibits the expected \(T^3 \) power-law behavior and approaches at high temperatures the Dulong–Petit limit of \(C_v = 3nNk_B = 74.830 \ J/\text{mol K} \). Due to the lack of experimental or other theoretical values existing on the thermodynamics for comparison with our results, we have calculated the thermodynamic properties for a number of materials such as CuBr and CuCl to further test of our computational methodology. Theory and experiment show satisfactory agreement within the limitation of the PWSCF program and the harmonic approximation. Here, we just list the calculated results \(S \) and \(C_p \) for CuBr and CuCl in Table 1 together with the corresponding experimental data \[20, 21\]. CuBr has a cubic symmetry structure and two kinds of atoms with lattice parameters of \(a = 6.695 \text{Å} \), the Cu atom occupies the (0, 0, 0) site and Br atoms occupy the \((1/4, 1/4, 1/4)\) site. The calculated lattice parameters are \(6.706 \text{Å} \). Compared with the experimental results, the maximal deviation is only 0.16\%, a normal agreement by GGA standards. The good agreement for CuBr can predict that the calculated thermodynamic properties of CuBr\textsubscript{0.5}Cl\textsubscript{0.5} can also be at the same level of accuracy. Our calculated results can be seen as a prediction for the future investigations.
Table-1. The calculated thermodynamic functions for CuBr and CuCl compared with experimental results.

<table>
<thead>
<tr>
<th></th>
<th>S(J/molK)</th>
<th>Cp(J/molK)</th>
<th>ΔH(kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuBr</td>
<td>95.7</td>
<td>96.1</td>
<td>54.1</td>
</tr>
<tr>
<td>CuCl</td>
<td>85.8</td>
<td>86.2</td>
<td>48.1</td>
</tr>
</tbody>
</table>

Fig-2. Calculated temperature dependence of heat capacity of CuBr$_{0.5}$Cl$_{0.5}$ at constant volume (C$_{V}$) for symmetrical and asymmetrical type

Fig-3. Variation of entropy S with temperature T for symmetrical and asymmetrical type

4. CONCLUSIONS

In summary, the calculation of thermodynamic properties of CuBr$_{0.5}$Cl$_{0.5}$ using DFT and pseudo-potential methods are performed. The heat capacity is found to be in good agreement with the calculatingly value (dulong petit value) with the error less than 0.19%. Finally, we predicate the important thermodynamics properties including the entropy and constant-volume specific heat within the quasi harmonic approximation (QHA). Our thermodynamic calculations of
CuBr$_{0.5}$Cl$_{0.5}$ compound is showed similar in symmetrical and asymmetrical type and will certainly be very useful for the interpretation of future experiments.

REFERENCES

J. B. Pedley, "Thermochemical data and structures of organic compounds, thermodynamic research center, Texas A & M University, College Station, TX," 1994.