ON HOMOGENEOUS CUBIC EQUATION WITH FOURUNKNOWN

\[x^3 + y^3 = 21zw^2 \]

M.A.Gopalan\(^*\)--- S. Vidhyalakshmi\(^*\) --- N. Thiruniraiselvi\(^*\)

---Professor, Department of Mathematics, SIGC, Trichy, Tamilnadu, India
---Research Scholar, Department of Mathematics, SIGC, Trichy, Tamilnadu, India

ABSTRACT

The homogeneous cubic equation with four unknowns represented by the Diophantine equation \[x^3 + y^3 = 21zw^2 \] is analyzed for its patterns of non–zero distinct integer solutions. A few interesting properties between the solutions and special numbers, namely, Polygonal number, Pyramidal number, Centered polygonal number, Stella octangular number and Octahedral number are presented.

Keywords: Homogeneous cubic, Cubic equation with four unknowns, Integral solutions, Cubic Diophantine equation, Third degree equation, Special numbers.

Notations Used

- Polygonal number of rank \(n \) with size \(m \).
 \[t_{m,n} = n[1 + \frac{(n-1)(m-2)}{2}] \]
- Pyramidal number of rank \(n \) with size \(m \).
 \[p_n^m = \frac{1}{6}[n(n+1)][(m-2)n + (5 - m)] \]
- Centered polygonal number of rank \(n \) with size \(m \).
 \[ct_{m,n} = \frac{mn(n+1)+2}{2} \]
- Stella octangular number of rank \(n \)
 \[SO_n = n(2n^2 - 1) \]
- Octahedral number of rank \(n \)
\[\text{OH}_n = \frac{1}{3} n (2n^2 + 1) \]

Contribution/ Originality

This study contributes in the existing literature different approaches of determining non-zero distinct integer solutions to the homogeneous equation of degree three with 4 unknowns given by \(x^3 + y^3 = 21zw^2 \)

1. **INTRODUCTION**

Diophantine equations, homogeneous and non-homogeneous have aroused the interest of numerous mathematicians since antiquity can be seen as in \([1-3]\). The Diophantine equations offer an unlimited field for research due to their variety. The problem of finding all integer solutions of a Diophantine equation with three or more variables and degree at least three, in general presents a good deal of difficulties. Cubic equation in three variables falls into the theory but is still an important topic of current research \([4-6]\). Equations with more than three variables and degree at least three are known very little.

In particular, one may refer \([7-18]\) for cubic equations with four unknowns. This research concerns with yet another interesting equation \(x^3 + y^3 = 21zw^2 \) representing the homogeneous cubic equation with four unknowns for determining its infinitely many non-zero integer points. Also a few interesting properties are presented.

2. **SOME INTERESTING PATTERNS**

The homogeneous cubic Diophantine equation with four unknowns to be solved is given by \(x^3 + y^3 = 21zw^2 \) \hspace{1cm} (1)

which is written as \((x + y)(x^2 - xy + y^2) = 21zw^2 \) \hspace{1cm} (2)

Suppose \(z = x + y \) \hspace{1cm} (3)

Substitute (3) into (2), it reduces to the quadratic equation \((x^2 - xy + y^2) = 21w^2 \) \hspace{1cm} (4)

Let \(x = u + v, y = u - v \) \hspace{1cm} (5)

where \(u \) and \(v \) are non-zero distinct arbitrary integers.

Substituting (5) in (4), it gives \(u^2 + 3v^2 = 21w^2 \) \hspace{1cm} (6)

Equation (6) is solved through different approaches and the different patterns of solutions of (1) obtained are presented below.
2.1 Pattern-1

Assume \(w = a^2 + 3b^2 = (a + i\sqrt{3}b)(a - i\sqrt{3}b) \) \hspace{1cm} (7)

Write 21 as \(21 = (3 + i2\sqrt{3})(3 - i2\sqrt{3}) \) \hspace{1cm} (8)

Using (7) and (8) in (6), it is written as

\[
(u + i\sqrt{3}v)(u - i\sqrt{3}v) = (3 + i2\sqrt{3})(3 - i2\sqrt{3})(a + i\sqrt{3}b)^2(a - i\sqrt{3}b)^2
\]

Suppose that following system of equations are derived from (9)

\[
(u + i\sqrt{3}v) = (3 + i2\sqrt{3})(a + i\sqrt{3}b)^2
\]

\[
(u - i\sqrt{3}v) = (3 - i2\sqrt{3})(a - i\sqrt{3}b)^2
\]

Equating the real and imaginary parts in either of the above two equations, we get

\[
u = 3a^2 - 9b^2 - 12ab
\]

\[
v = 2a^2 - 6b^2 + 6ab
\]

Hence, in view of (9) and (5), we have

\[
\begin{align*}
x &= x(a,b) = 5a^2 - 15b^2 - 6ab \\
y &= y(a,b) = a^2 - 3b^2 - 18ab \\
z &= z(a,b) = 6a^2 - 18b^2 - 24ab
\end{align*}
\]

Thus (7) and (10) represent non-zero distinct integer solutions for (1).

Properties of pattern-1: It is easy to infer following properties from (10)

- \(x(n,2n^2 - 1) - 5y(n,2n^2 - 1) = 6y(n,2n^2 - 1) - z(n,2n^2 - 1) = 84n(2n^2 - 1) = 84SO_n \)
- \(z(n,n(n + 1)) - x(n,n(n + 1)) - w(n,n(n + 1)) - 9p_n^5 = 6t_{4,n} \)
- \(x(n,2n^2 + 1) - 5y(n,2n^2 + 1) = 84(n,2n^2 + 1) = 252OH_n \)
- \(x(n,n) - z(n,n) + w(n,n) - 8t_{4,n} = 16n^2 \), a perfect square
- \(x(n,n) - z(n,n) + w(n,n) = 24n^2 \), a nasty number.

Notes of pattern-1:
Instead of (8), write 21 as \[21 = \frac{(3 + i5\sqrt{3}) - (3 - i5\sqrt{3})}{4} \]

Following the procedure presented in pattern-1, the corresponding integer solutions of (1) are

\[
\begin{align*}
\begin{cases}
x = x(a, b) = 4a^2 - 12b^2 - 12ab \\
y = y(a, b) = -a^2 + 3b^2 - 18ab \\
z = z(a, b) = 3a^2 - 9b^2 - 30ab \\
w = w(a, b) = a^2 + 3b^2
\end{cases}
\]

2.2 Pattern-2

Equation (6) can be written as \(u^2 + 3v^2 = 21w^2 \) \(*1\) \quad (11)

Write 1 as \(1 = \frac{(1 + i\sqrt{3})(1 - i\sqrt{3})}{4} \) \quad (12)

Using (7), (8) and (12) in (11), it is written as

\[
(u + i\sqrt{3}v)(u - i\sqrt{3}v) = (3 + i2\sqrt{3})(3 - i2\sqrt{3})(a + i\sqrt{3}b)^2(a - i\sqrt{3}b)^2 \left(\frac{1 + i\sqrt{3}}{2}\right) \left(\frac{1 - i\sqrt{3}}{2}\right)
\]

Consider \((u + i\sqrt{3}v) = (3 + i2\sqrt{3})(a + i\sqrt{3}b)^2 \left(\frac{1 + i\sqrt{3}}{2}\right) \)

Equating real and imaginary parts, we have

\[
\begin{align*}
u &= \frac{1}{2} \left[-3a^2 + 9b^2 - 30ab \right] \\
v &= \frac{1}{2} \left[5a^2 - 15b^2 - 6ab \right]
\end{align*}
\]

Substituting the above value of \(u \) and \(v \) in (3) and (5), we obtain

\[
\begin{cases}
x = x(a, b) = a^2 - 3b^2 - 18ab \\
y = y(a, b) = -4a^2 + 12b^2 - 12ab \\
z = z(a, b) = -3a^2 + 9b^2 - 30ab
\end{cases}
\]

Thus (7) and (12a) represent non-zero distinct integer solutions for (1).

Properties of pattern-2: It is easy to infer following properties from (12a)

- \(x(n, -n) + w(n, -n) = 20n^2 = 20t_{4,n} \)
\[4x(n, n + 1) + y(n, n + 1) = -84n(n + 1) = 3x(n, n + 1) + z(n, n + 1) \]

\[3w(n, n) - z(n, n) = 36n^2 \text{ is a perfect square} \]

\[3\{x(n, 2n^2 - 1) + w(n, 2n^2 - 1) - 18SO_n\} = 6n^2, \text{ a nasty number} \]

\[21^2\{17x(\text{ } -n, n^2) + y(\text{ } -n, n^2) + z(\text{ } -n, n^2)\} = (42n)^3, \text{ a cubical integer.} \]

2.3 Pattern-3

Instead of (12), write 1 as \[1 = \frac{(1 + i4\sqrt{3})(1 - i4\sqrt{3})}{49} \]

Repeating the above process as in pattern-2, the non-zero distinct integral solutions of (1) are found to be

\[x = x(a, b) = -a^2 + 3b^2 - 18ab \]
\[y = y(a, b) = -5a^2 + 15b^2 - 6ab \]
\[z = z(a, b) = -6a^2 + 18b^2 - 24ab \]
\[w = w(a, b) = a^2 + 3b^2 \]

Properties of pattern-3: It is easy to infer following properties from above equations

\[5x(n^2, n + 1) - y(n^2, n + 1) = -84(n^2, n + 1) \equiv 0(\text{mod} 84) \]

\[3x(n, n) - y(n, n) + 165t_{4, n} = 81n^2, \text{ a perfect square} \]

\[w(n, n) + x(n, n) + \text{ perfect square} = n^2 = t_{4, n} \]

\[6x(n, 2n^2 + 1) - z(n, 2n^2 + 1) = 252OH_n \]

2.4 Pattern-4

One may write (6) as \(u^2 - 9w^2 = 3(4w^2 - v^2) \)

Write (13) in the form of ratio as

\[\frac{u + 3w}{3(2w - v)} = \frac{2w + v}{u - 3w} = \frac{a}{b}, b \neq 0 \]

Which is equivalent to the system of double equations
Applying the method of cross-multiplication, we have

\[u = 9a^2 - 3b^2 + 12ab \]
\[v = 6a^2 - 2b^2 - 6ab \]
\[w = 3a^2 + b^2 \]

Hence, in view of (3) and (5), the corresponding values of x, y and z are given by

\[
\begin{align*}
\text{x} &= x(a, b) = 15a^2 - 5b^2 + 6ab \\
\text{y} &= y(a, b) = 3a^2 - b^2 + 18ab \\
\text{z} &= z(a, b) = 18a^2 - 6b^2 + 24ab
\end{align*}
\]

Thus (15) and (15a) represent non-zero distinct integer solutions for (1).

Properties of pattern-4: It is easy to infer following properties from (15a)

- \(5y(n,2n^2 - 1) - x(n,2n^2 - 1) - 2SO_n = 82(n,2n^2 - 1) \equiv 0 \text{(mod } 82) \)
- \(x(n, n + 1) + y(n, n + 1) - z(n, n + 1) = 0 \)
- \(y(n, 19n^2 - 13) + w(n, 19n^2 - 13) - 108CP_{19,n} - t_{14,n} = 5n \equiv 0 \text{(mod } 5) \)
- Each of the following represents a perfect square
 - \(6\{y(n,19n^2 - 13) + w(n,19n^2 - 13) - 108CP_{19,n}\} = 36n^2 \)
 - \(21\{6y(n,n) - z(n,n)\} = (42n)^2 \)

2.5 Pattern-5

Equation (6) can be written as

\[3v^2 = 21w^2 - u^2 \] \hfill (16)

Write \(v = 21a^2 - b^2 \) \hfill (17)

Write \(s \) as

\[s = \frac{(\sqrt{21} + 3)(\sqrt{21} - 3)}{4} \] \hfill (17a)

Substituting (17) and (17a) in (16), we get
\[(\sqrt{21}w + u)(\sqrt{21}w - u) = (\sqrt{21}a + b)^2(\sqrt{21}a - b)^2\left(\frac{\sqrt{21} + 3}{2}\right)\left(\frac{\sqrt{21} - 3}{2}\right)\]

Consider

\[(\sqrt{21}w + u) = (\sqrt{21}a + b)^2\left(\frac{\sqrt{21} + 3}{2}\right)\]

Equating rational and irrational parts, we have

\[u = \frac{1}{2}[63a^2 + 3b^2 + 42ab]\]

and

\[w = \frac{1}{2}[21a^2 + b^2 + 6ab]\] \quad (18)

Replacing \(a\) by \(2A\) and \(b\) by \(2B\) in (18), and using (3), (5), (17) and (17a), we have

\[x = x(A, B) = 210A^2 + 2B^2 + 24AB\]

\[y = y(A, B) = 42A^2 + 10B^2 + 84AB\]

\[z = z(A, B) = 252A^2 + 12B^2 + 168AB\]

\[w = w(A, B) = 42A^2 + 2B^2 + 12AB\]

Properties of pattern-5:

- \(6[y(n, n^2) - w(n, n^2)] - 5y(n, n^2) + x(n, n^2) = 96n^3 = 96CP_{6,n}\)
- \(z(n, n + l) - 6w(n, n + l) = 96n(n + l) = 6[y(n, n + l) - w(n, n + l)] - [5y(n, n + l) - x(n, n + l)]\)
- \(y(n, n) - w(n, n) = 80n^2 \equiv 0(\text{mod} 80)\)
- \(y(n, n) - w(n, n) + t_{4,A} = 8l_2^n\), a perfect square
- \(z(n, n) - 6w(n, n) = 96n^2 = \text{a Nasty number}\)

3. CONCLUSION

In this paper, we have illustrated different ways of obtaining non-zero distinct integer solutions to the homogeneous cubic equation with four unknowns given by \(x^3 + y^3 = 21zw^2\).

As the Diophantine equations are rich in variety, one may search for the integral solutions of other forms of cubic Diophantine equations along with their corresponding properties.

4. ACKNOWLEDGEMENT

The financial support from the UCG, New Delhi (F-MRP-5122/14(SERO/UCG) dated March 2014) for a part of this work is gratefully acknowledged.
REFERENCES

[8] M. A. Gopalan and V. Pandi Chelvi, "Remarkable solutions on the cubic equation with four unknowns \(x^3 + y^3 + z^3 = 28(x + y + z)w^2\)," *Antarctica J. Math*, vol. 4, pp. 393-401, 2010.

M. A. Gopalan, S. Vidhyalakshmi, and S. Mallika, "Observation on the cubic equation with four unknowns \(2(x^3 + y^3) = z^3 + w^2(x + y)\)," *IJAMP*, vol. 4, pp. 103-107, 2012.

M. A. Gopalan, S. Vidhyalakshmi, and G. Sumathi, "On the homogeneous cubic equation with four unknowns \(x^3 + y^3 = 14z^3 - 3w^2(x + y)\)," *Discovery*, vol. 2, pp. 17-19, 2012.

M. A. Gopalan and K. Geetha, "Observation on the cubic equation with four unknowns, \(x^3 + y^3 + xy(x + y) = z^3 + 2(x + y)w^2\)." *International Journal of Pure and Applied Mathematics Sciences*, vol. 6, pp. 25-30, 2013.

M. A. Gopalan, S. Vidhyalaksmi, and N. Thiruniraiselvi, "On homogeneous cubic equation with four unknowns \((x + y + z)^3 = z(xy + 31w^2)\)," *Cayley J.Math.*, vol. 2, pp. 163-168, 2013.

M. A. Gopalan, S. Vidhyalaksni, and A. Kavitha, "Observations on the homogeneous cubic equation with four unknowns \((x + y)(2x^2 + 2y^2 - 3xy) = (k^2 + 7)zw^2\)," *Bessel J.Math.*, vol. 4, pp. 1-6, 2014.