EFFECT OF TEMPERATURE AND DRYING TIME ON THE SYNTHESIS OF STABLE K₂FeO₄ BY WET METHOD

Abdellatif El Maghraoui† — Abdelaziz Zeroualea — Mustapha Iijaali

Laboratory of Chemistry of Condensed Matter (LCMC), Faculty of Science and Technology, Sidi Mohammed Ben Abdellah University, Fez (Morocco)

ABSTRACT

Fe (VI) as an oxidant has a higher oxidation potential than ozone, hydrogen peroxide, permanganate or chlorine. Demanding environmental regulations encourage the use of ferrate as a decontaminating agent of choice. Thus, the purpose of this work is to identify and optimize the time and drying temperature of stable to ambient K₂FeO₄ by wet means facilitating their storage and transport. Wet synthesis is performed by attacking ferric sulfate FeSO₄, 7H₂O by ClO⁻ hypochlorite with a chlorometric degree of 50 ° F in a concentrated medium KOH, at a temperature of 55 ° C. The drying time is of the order of 12 hours at a temperature of 120 ° C. The obtained result was characterized by UV spectrophotometer by measuring the optical density at a wavelength of 507 nm.

Keywords: Ferrate, Bactericidal, Antioxidant, Flocculant, Coagulant, Water treatment, Electrochemical, Cathode.

1. INTRODUCTION

Iron compounds in oxidation degree (VI) have the advantage of being powerful oxidants and bactericides [1] which explains their particular interest in water treatment.

The synthesis of ferrates (VI) has been studied by various authors [2-14]. Despite the improvement, it remains limited. Hrostowski and Scott [15] proposed a potassium ferrate synthesis method with a yield of 10 to 15% of ferrate. One year later, Ockerman, et al. [16], Schreyer, et al. [17] showed that the protocols of precipitation, washing and drying are required to achieve a stable and solid product.

Williams and Riley [18] have provided an advance in the ferrate preparation protocol (VI) by replacing sodium hydroxide by KOH. However, for the environment in which operate Hrostowski and Scott [15] in this case very concentrated KOH, K₂FeO₄ is assumed to be very soluble whereas KCl precipitates in the solution, which then makes possible a separation by filtration.
The wet method considered the most convenient is, however, very expensive Lee, et al. [19]. Deininger [20] déposited a patent for an economical process for the preparation of large-scale potassium ferrate from three compounds: potassium hydroxide, chlorine and ferric salt.

2. MATERIAL AND METHOD

Hydrated iron sulfate FeSO₄· 7H₂O is mixed with bleach (ClO⁻ hypochlorite) at 50 ° F (French chlorometric degree) in a concentrated medium of KOH. The mixture is stirred for one hour at a temperature of 55 ° C according to the following reaction:

\[
2\text{FeSO}_4\cdot 7\text{H}_2\text{O} + 2\text{ClO}^- + 4\text{OH}^- \rightarrow \text{FeO}_4^{2-} + 2\text{Cl}^- + \text{SO}_4^{2-} + 9\text{H}_2\text{O}
\]

Recovering K₂FeO₄ is performed by vacuum filtration. This phase is dried at 120°C for 12 hours and then put into a ball desiccator. The resulting phase was analyzed and monitored over time with UV spectroscopy by measuring the optical density at 507 nm.

According to Tsapin, et al. [21] measuring the optical density of the solution of ferrate (VI) is done at a wavelength of 507 nm with a pH greater than 10. The characteristic peak of iron (IV) appears at this wavelength.

3. RESULTS

The measurement of the optical density of the solution of ferrate (VI) of the phase synthesized at 507 nm gives an idea about the evolution of the performance and stability of iron (VI).

![Figure 1](image)

Figure 1. Optical Density of the solution of ferrate (VI) (K₂FeO₄) at 507 nm as a function of the drying temperature for a period of 12 hours.

The curve (Fig. 1) shows that the optical density of ferrate (VI) increases with the temperature up to 120°C which is an optimum temperature for the production of stable at ambient ferrate (VI) with a high yield whose optical density is of the order of 2.911.
According to these results (Fig. 2), the optical density peaks at 2286 for a period of 12 hours, which explains the impact of the drying time on the production and yield of stable at ambient iron (VI).

Monitoring the results of degradation (K₂FeO₄) shows that the storage period goes up to 12 months with a degradation rate limited to 30.61% in the first six months. The results of calculating the rate of degradation between the months and between the state of production of ferrate (VI) and the different months of storage is given in Table 1.

The relation used to calculate the percentage degradation of iron (VI) is given by the following formula:

\[
\text{% Degradation of the iron (VI) = } \frac{\text{D.O}_i - \text{D.O}_f}{\text{D.O}_i}
\]

\(\text{D.O}_i\): Optical densities of the iron (VI) respectively in the initial state

\(\text{D.O}_f\): Optical Densities of iron (VI) in the final state

According to our results (table 1), synthesized iron (VI) may withstand up to 12 months of storage at room temperature, as iron degradation rate (VI) in the first six months does not exceed 30.61%.
Note that the K\textsubscript{2}FeO\textsubscript{4} degradation rate remains variable over time and varies differently from one month to another during storage. Climate change plays a very vital role in the degradation rate of ferrate (VI) due to changes in humidity.

6. DISCUSSION

As our results show, the drying temperature and drying time needed for the production of stable at room K\textsubscript{2}FeO\textsubscript{4} with a high yield are respectively of the order of 120 °C and 12 hours, which is an encouraging step for the development of new industrial processes for the production of ferrate VI. This result confirms the studies done by Hrostowski and Scott \cite{15} and Wang, et al. \cite{12}; Ockerman, et al. \cite{16}.

Monitoring the degradation of synthesized K\textsubscript{2}FeO\textsubscript{4} show the stability of this phase up to 12 months of storage with a degradation rate in the first six months that does not exceed 30.61%. Climate variation impacts the degradation of ferrates by changes in humidity.

7. CONCLUSION

This manuscript reviews the most appropriate method for the production of K\textsubscript{2}FeO\textsubscript{4} stable at ambient from the reaction of hydrated iron sulfate FeSO\textsubscript{4}.7H\textsubscript{2}O and bleach (hypochlorite the ClO-) at 50°F (French chlorometric degree) in a concentrated medium KOH for one hour. Comparing the synthesis results of the obtained stable K\textsubscript{2}FeO\textsubscript{4} with that of the literature, we notice that we obtained, for the first time, a relatively high yield of stable at ambient ferrate (VI) with wet method processing during 12 months. This represents a significant advance in the field of synthetic iron (VI) at laboratory scale. This result is very encouraging for mass production of ferrate (VI) at industrial scale.

RÉFÉRENCES

\cite{5} G. Hoy and M. Corson, "Critical slowing down of spin fluctuations in K\textsubscript{2}FeO\textsubscript{4}," J. of Magnetism and Magnetic Materials, vol. 15, pp. 627-628, 1980.

\cite{6} F. Menil, "Systematic trends of the 57Fe mössbauer isomer shifts in (FeOn) and (FeFn) polyhedra. Evidence of a new correlation between the isomer shift and the inductive effect of the competing bond T-X (→Fe) where X Is O or F and T any element with a formal positive charge," J. Phys. Chem. Solids, vol. 46, pp. 763-789, 1985.

