REVIEW OF THE ROLE OF PPAR GAMMA AND AGONISTS IN THE DEVELOPMENT OF HEART

Maryam Peymani† — Kamran Ghaedi†— Mohammad Hossein Nasr-Esfahani

1. INTRODUCTION

Peroxisome-proliferator activator receptor γ (PPARγ) is a nuclear receptor of central importance in metabolic processes. Recent experimental pieces of evidence demonstrate that PPARγ is implicated in cardiac function and development. Here we reviewed the role of PPARγ and ligands that emerged as a potential new therapeutic target for several cardiac diseases.

Keywords: PPARs, PPARγ.
1.1. PPARγ has not any Role

Whereas the energy request increases when cardiac progenitor cells are developing rhythmic contractile activity, PPAR activation may play a critical role during cardiomyogenesis of embryonic stem (ES) cells. Sharifpanah shown that ES cells express PPARα,β, and γ mRNA during differentiation of ES cells towards cardiac cells. Treatment with PPAR agonists (WY14643, GW7647, and ciprofibrate) significantly increased cardiomyogenesis and expression of the cardiac genes MLC2α, ANP, MHC-, MLC2v, and cardiac α-actin. Furthermore, WY14643 increased PPARα gene expression and the expression of the cardiogenic transcription factors GATA-4, Nkx2.5, DTEF-1, and MEF 2C. In contrast, the PPARα antagonist MK886 decreased cardiomyogenesis, whereas the PPARβ agonist L-165,041 as well as the PPARγ agonist GW1929 were without effects. Also in this study studied Expression of PPARγ mRNA During the Differentiation of ES cells and was shown that PPARγ expression showed 2 maxima of expression at days 8 and 18, respectively (Sharifpanah et al., 2008).

Glide showed the FA oxidation rate increased in cardiomyocytes in presence of PPARα and PPARβ/δ ligands, but not to PPARγ ligands. Similarly, the FA-mediated expression of FA-handling proteins was mimicked by PPARα and PPARβ/δ, but not by PPARγ ligands. As expected, in embryonic rat heart-derived H9c2 cells, which only express PPARβ/δ, the FA-induced expression of genes was mimicked by the PPARβ/δ ligand only, demonstrating that FA also act as ligands for the PPAR PPARβ/δ isoform. Together, the present findings reveal that, next to PPARα, PPARβ/δ, but not PPARγ, plays a noticeable role in the regulation of cardiac lipid metabolism, thereby warranting further research into the role of PPARβ/δ in cardiac disease (Gilde et al., 2003).

The role of PPARγ and thiazolidinediones in regulation of myocardial lipid metabolism is controversial. Barbier assayed the role of PPARγ on myocardial lipid metabolism and function and differentiate local/from systemic actions of PPARs agonists using cardiomyocyte-specific PPARγ –knockout (CM-PGKO) mice. To this aim, the effect of PPARγ, PPARγ/PPARα and PPARα agonists on cardiac function, intra-myocyte lipid accumulation and myocardial expression profile of genes and proteins, affecting lipid oxidation, uptake, synthesis, and storage (CD36, CPT1MIIA, AOX, FAS, SREBP1-c and ADPR) was evaluated in cardiomyocyte-specific PPARγ –knockout (CM-PGKO) and littermate control mice undergoing standard and high fat diet (HFD). At baseline, protein levelsand mRNA expression of genes involved in lipid uptake, oxidation, synthesis, and accumulation of CM-PGKO mice were not significantly different from those of their littermate controls. In standard condition, pioglitazone and rosiglitazone do not affect myocardial metabolism while, fenofibrate treatment significantly increased CD36 and CPT1MIIA gene expression. In conclusion, at baseline, PPARγ does not play a crucial role in regulating cardiac metabolism in mice, probably due to its low myocardial expression. PPARs agonists, indirectly protect myocardium from lipotoxic damage likely reducing fatty acids delivery to the heart through the actions on adipose tissue (Barbieri et al., 2012).
1.2. Negative Roles of PPAR Gamma

To directly determine the role of cardiomyocyte PPARγ, Duan developed a cardiomyocyte-specific PPARγ knockout (CM-PGKO) mouse model. CM-PGKO mice developed cardiac hypertrophy with preserved systolic cardiac function. Treatment with a TZD, rosiglitazone, induced cardiac hypertrophy in both littermate control mice and CM-PGKO mice and activated distinctly different hypertrophic pathways from CM-PGKO. CM-PGKO mice were found to have increased expression of cardiac embryonic genes and elevated nuclear factor κB activity in the heart, effects not found by rosiglitazone treatment. Rosiglitazone increased cardiac phosphorylation of p38 mitogen-activated protein kinase independent of PPARγ, whereas rosiglitazone induced phosphorylation of extracellular signal–related kinase 1/2 in the heart dependent of PPARγ. Phosphorylation of c-Jun N-terminal kinases was not affected by rosiglitazone or CM-PGKO. Surprisingly, despite hypertrophy, Akt phosphorylation was suppressed in CM-PGKO mouse heart. These data show that cardiomyocyte PPARγ suppresses cardiac growth and embryonic gene expression and inhibits nuclear factor B activity in vivo. Further, rosiglitazone causes cardiac hypertrophy at least partially independent of PPARγ in cardiomyocytes and through different mechanisms from Duan et al. (2005).

Nissen and Wolski demonstrated that Rosiglitazone increase the Risk of Myocardial Infarction and Death from Cardiovascular Causes (Nissen and Wolski, 2007).

1.3. Positive Roles of PPAR Gamma

SAKAI investigated the effects of the thiazolidinediones troglitazone and pioglitazone, activators of PPARc, on cardiac hypertrophy due to pressure overload provoked by abdominal aortic banding (AB) in rats. Endothelin-1 (ET-1) causes cardiac hypertrophy, and ET receptor antagonists inhibit the development of cardiac hypertrophy in vitro and in vivo Because the ET-1 gene has AP-1 response elements in its 5' flanking region, the thiazolidinediones troglitazone and pioglitazone may inhibit cardiac hypertrophy partly through suppression of AP-1-induced ET-1 gene up-regulation (Sakai et al., 2002).

Ding studied study is to investigate in vivo role(s) of PPARγ in the heart. Results showed PPARγ null mice exhibited pathological changes around 3 months of age, featuring progressive cardiac hypertrophy with mitochondrial oxidative damage. Most mice died from dilated cardiomyopathy. Cardiac expression of Sod2 (encoding manganese superoxide dismutase; MnSOD), a mitochondrial antioxidant enzyme was downregulated both in transcript and protein levels in cardiac samples in PPARγ knockout mice independent of pathological changes. Promoter analyses revealed that Sod2 is a target gene of PPARγ. Consequently, myocardial superoxide content in PPARγ knockout mice was increased, leading to extensive oxidative damage. They demonstrated that PPARγ is critical to myocardial redox homeostasis (Ding et al., 2007).

Ye investigated the effects of PPAR-g activation on myocardial miRNA levels and the role of miRNAs in IR injury. They evaluated the expression changes of miRNAs in the rat heart after
PIO administration using miRNA arrays and then confirmed the result by northern blot. miR-29a and c levels decreased remarkably after 7-day treatment with PIO. In H9c2 cells, the effects of PIO and rosiglitazone on miR-29 expression levels were blocked by a selective PPAR-γ inhibitor GW9662. Downregulation of miR-29 by antisense inhibitor or by PIO protected H9c2 cells from simulated IR injury, indicated as increased cell survival and decreased caspase-3 activity. In contrast, overexpressing miR-29 promoted apoptosis and completely blocked the protective effect of PIO. Antagomirs against miR-29a or -29c significantly reduced myocardial infarct size and apoptosis in hearts subjected to IR injury. Western blot analyses demonstrated that Mcl-2, an anti-apoptotic Bcl-2 family member, was increased by miR-29 inhibition (Ye et al., 2010).

Wayman investigate the effects of various chemically distinct activators of PPARα and PPARγ in a rat model of acute myocardial infarction. They documented the expression of the mRNA for PPARγ (isoform 1 but not isoform 2) as well as PPARα and PPARβ/δ in freshly isolated cardiac myocytes and cardiac fibroblasts and in the left and right ventricles of the heart. They have discovered that various chemically distinct ligands of PPAR-γ (including the TZDs rosiglitazone, ciglitazone, and pioglitazone, as well as the cyclopentanone prostaglandins 15D-PGJ2 and PGA1) cause a substantial reduction of myocardial infarct size in the rat. The mechanisms of the cardioprotective effects of 15D-PGJ2 may include 1) activation of PPARα, 2) activation of PPARγ, 3) expression of HO-1, and 4) inhibition of the activation of NFκB in the ischemic-reperfused heart. Inhibition by 15D-PGJ2 of the activation of NFκB in turn results in a reduction of the 1) expression of inducible nitric oxide synthase and the nitration of proteins by peroxynitrite, 2) formation of the chemokine MCP-1, and 3) expression of the adhesion molecule ICAM-1 (Wayman et al., 2002).

Shinmura showed to improve the efficacy of MSC transplantation in vivo by pretreatment of MSCs with pioglitazone. MSCs were cultured with or without medium containing 1 μM of pioglitazone before cardiomyogenic induction. After cardiomyogenic induction in vitro, cardiomyogenic transdifferentiation efficiency (CTE) was calculated and demonstrated that Transplantation of pioglitazone pretreated MSCs significantly improved cardiac function and can be a promising cardiac stem cell source to expect cardiomyogenesis (Shinmura et al., 2011).

2. CONCLUSION

 However, further research is required to investigate how PPARγ activation affects cell commitment and function that may have a potential therapeutic application.

REFERENCES


Ding, G., M. Fu, Q. Qin, W. Lewis, H. Kim, T. Fukai, M. Bcakanmwo, Y. Chen, M. Schneider, D. Mangelsdorf, R. Evans and


Views and opinions expressed in this article are the views and opinions of the author(s), The International Journal of Biotechnology shall not be responsible or answerable for any loss, damage or liability etc. caused in relation to/arising out of the use of the content.