PRODUCTIVITY OF FARMLAND VALUES IN FOOD CROP PRODUCTION IN THE NATURAL DISASTERS PRONE AREAS OF IMO STATE, NIGERIA

Ohajianya D.O† — Okwara M.O# — Ugwu J.N# — Tim Ashama A.† — Mbah R.O† — Dike N.F#

†Department of Agricultural Economics, Federal University of Technology, Owerri, Imo State, Nigeria
#Department of Agricultural Economics and Extension, Enugu State University of Science and Technology, Enugu State, Nigeria
#Department of Agricultural Science, AlvanIkoku Federal College of Education Owerri, Imo State, Nigeria
#Department of Rural Sociology and Extension, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria
#Nigerian Investment Promotion Commission, South East Zonal Office, Enugu, Nigeria

ABSTRACT

This study analyzed productivity of farmland values in food crop production in natural disasters prone areas of Imo State, Nigeria. The study specifically determined farmland values, productivity of food crop farmers by farmland values, and factors influencing food crop farmers productivity in the different farmland values. Data were collected with questionnaire from 280 proportionately and randomly selected food crop farmers. Data were analyzed using descriptive statistics, farmland value model, productivity model, and multiple regression techniques. Results showed that farmland suitability index ranged from < 0.499 to 0.948 with a mean of 0.350. Majority (72.1%) of the farmers cultivated on non-suitable farmlands, 22.9% of them cultivated on marginally suitable farmlands while few (5%) of the farmers cultivated on suitable farmlands, implying that majority of the farmlands cultivated for food crop production in the study area are not suitable. Food crop farmers’ productivity increases with suitability of farmland and the productivity of farmland increases from 1.35 to 2.25 and 3.14 as farmland moves from non-suitable to marginally suitable and suitable values respectively, thus making marginally suitable and suitable farmlands about 48% and 133% higher in farmland productivity than non-suitable farmlands. Farmland rent, quantity of fertilizer applied, quantity of organic manure applied, education level, quality of planting materials, and distance of farmland from farmer’s home have significant influence on marginally suitable farmlands productivity. Crop farmers cultivating non-suitable farmland should explore measures to improve the fertility of their farmlands or minimize wastage of production resources through reduction in the size of farmlands, cultivated.

Keywords: Productivity, Farmland values, Food crop, Imo state, farmers, Farmland suitability index, Natural disaster.

1. INTRODUCTION

Agricultural production is highly prone to natural disasters, and substantial proportion of the population which are rural farmers depend on agriculture for its livelihood. Natural disasters are happening more often and having an ever more dramatic effect on the productivity of food crop farmers (Delaney et al., 2004).
In Imo State of Nigeria, agriculture is exposed to a large variety of risks and uncertainties from the vagaries of nature such as bad weather conditions, pest and diseases, flood, thunderstorm, erosion and fire outbreaks (Chukuezi, 2008).

A substantial part of the population of Imo State are rural farmers, most of who cultivate food crops such as cassava, yam, maize, cocoyam, melon, rice and vegetables (Obasi, 1995) and the effects of these natural disasters lead to the disruption of the rural farmer’s livelihood causing a vicious cycle of falling productivity and farm incomes, and adding to the risk, damage and stress of disasters. These rural farmers are more exposed to natural disasters because they tend to live in marginal areas and depend on high-risk, low return livelihood systems such as rain fed agriculture and face many sources of vulnerability including little physical infrastructure (Ohajianya et al., 2006).

The rural food crop farmers have suffered dearly in productivity loss during the occurrence of these natural disasters in the past and are still suffering the effect presently which varies along farmland values.

The farmland values and their food crop productivities are determined by the severity of natural disasters and this has not been empirically investigated in Imo State, Nigeria. Not only do these natural disasters destroy crops and disrupt food supplies, they also affect farmland quality and production potential (Stephenson, 1994).

Occurrence of natural disasters have led to crop failure, low productivity, reduced farm land quality, mass out-migration and negative economic growth (Adedipe et al., 2007). Because of this, the need for reorienting and recasting for agricultural decision making and insulation of the food crop farmers from adverse impacts of natural disasters hinged on empirical evidence become more pressing.

Productivity denotes the ratio of economic output to any or all associated inputs (in real terms) or output per unit of productive input (Ehui and Spencer, 1990). Food crop productivity is the ratio of value of total output per hectare to values of total inputs used in the production process (Okon and Egbon, 1999; Freeman et al., 2001; Etiosa and Agho, 2007). A low value farmland may not support increasing food crop output over years, hence food crop output on marginally suitable farmland can hardly sustain the increasing population of farm households nor solve the food security problem of Imo State, Nigeria. Therefore, a suitable farmland is brought under intense pressure of continuous cultivation leaving the marginally suitable and unsuitable farmlands minimally cultivated due to loss of fertility (Korie et al., 2006; Ohajianya and Asiabaka, 2016). Productivity of farmland declines with farmland quality (Okere, 2012) and cultivation of unsuitable and marginally suitable farmlands by food crop farmers may lead to increase in farm household poverty if remedial measures are not put in place, and this is a cause for serious concern to agricultural research scientists and policy makers in Imo State, Nigeria coupled with the fact that previous researches in Imo State that focused on food crop productivity in different farmland values are very scarcity. It is based on this background that, this study analyzed farmland values, determined productivity of food crop farmers by farmland values and determined the factors influencing food crop farmers productivity in the different farmland values in Imo State, Nigeria.

2. METHODS AND MATERIALS

This study was conducted in natural disaster prone areas of Imo State of Nigeria. The State is divided into three agricultural zones of Owerri, Orlu and Okigwe and subdivided into 27 Local Government Areas (LGAs). The state is located between latitudes 5º 06’ N and longitudes 7º 08’E. According to the Ministry of Lands and Survey (2012) the total land area of Imo State is 5067.20 km².

The major areas in the state that are being affected by natural disasters according to the Department of Erosion Control, Ministry of Petroleum and Environment (2006) include Owerri West, Mbaitoli, Ikeduru, AbohMbaise, Owerri North, AhiazuMbaise, and EzinihitteMbaise LGAs in Owerri Agricultural zone; Obowo, Ehime Mbano, IhitteUboma, and IsiabaMbano LGAs in Okigwe agricultural zone, and Orlu, Isu, Njaba., Ideato North, Ideato South, and Orsu LGAs in Orlu agricultural zone. Farming is the major occupation of majority of the inhabitants, and major food crops cultivated include yam, cassava, cocoyam, maize, rice, and vegetables.
Purposive sampling technique was employed to select two LGAs from each agricultural zone so as to ensure the selection of LGAs that are more prone to natural disasters.

One community was randomly selected from each of the six LGAs, making a total of six communities. From each selected community, one village was sampled to get a total of six villages. The sampling frame was the list of food crop farmers in the selected villages. From this list totaling 519 food crop farmers, proportionate and random sampling techniques were used to select a sample size of 280 food crop farmers.

Data were collected with validated structured questionnaire in 2015, and analyzed using descriptive statistics (mean and percentages), farmland value model, and multiple regression techniques. Farmland value index was analyzed using farmland value model specified as,

\[
F_v = \frac{K_i}{T_L} \quad (0 < F_v < I)
\]

where,
- \(F_v\) = farmland value index (measured as the ratio of actual number of positive farmland management activities and the number of avoidable negative externalities by an ith food crop farmer)
- \(K_i\) = Actual number of positive farmland management practices and number of negative externalities avoidable by an ith food crop farmer
- \(T_L\) = Aggregates of both farmland management activities that food crop farmers responded yes and the negative externalities that food crop farmers responded No to.

As \(F_v\) approaches I (\(F_v\geq 0.65\)), then farmland is very suitable for food crop cultivation. If \(F_v\) falls between 0.5 and 0.64, then farm land is marginally suitable. But if \(F_v\) approaches O (\(F_v < 0.5\)), then the farm land is non-suitable for food crop production (Okere, 2012).

Food crop productivity of different farmland values were determined using productivity model which according to Olayide and Heady (1982) and Dixon and Mac-Donald (1990) is specified as;

\[
A_i = \frac{Y_i}{L_i} \quad \text{...............}(2)
\]

where,
- \(A_i\) = Food crop productivity of ith farmland value
- \(Y_i\) = output value or total returns of food crops from ith farmland value (₦)
- \(L_i\) = Rent and cost of farmland improvement in each farmland value (₦)

Factors influencing food crop farmers productivity in the different farmland values were determined using the ordinary least squares multiple regression model specified implicitly as follows;

\[
P_{fi} = F (X_{i1}, X_{i2}, X_{i3}, X_{i4}, X_{i5}, X_{i6}, X_{i7}, e) \quad \text{..}(3)
\]

Where,
- \(P_{fi}\) = food crop productivity of ith farmland value
- \(X_{i1}\) = farm size (Ha)
- \(X_{i2}\) = farm land rent (₦)
- \(X_{i3}\) = Quantity of fertilizer applied (kg)
- \(X_{i4}\) = Quantity of organic manure applied (kg)
- \(X_{i5}\) = Education level (Number of years spent in school)
- \(X_{i6}\) = Farming experience (years)
- \(X_{i7}\) = Quality of planting materials (Dummy variable, 1 for good quality, 0 if otherwise)
- \(e\) = error term

It is expected \textit{a priori} that the coefficients of \(X_{i1}, X_{i3}, X_{i4}, X_{i6}, X_{i7} > 0; X_{i2}, X_{i5} < 0\)
Four functional forms of the ordinary least squares, multiple regression model; linear, semi-log, double-log, and exponential were fitted to the data so as to select the lead equation based on having the highest value of coefficient of multiple determination (R^2), highest number of significant variables, and conformity to *a priori* expectations.

3. RESULTS AND DISCUSSION

3.1. Farmland Value

The distribution of food crop farmers according to farmland value is presented in Table 1.

<table>
<thead>
<tr>
<th>Farmland value index</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>$<0.499^*$</td>
<td>202</td>
<td>72.1</td>
</tr>
<tr>
<td>0.500</td>
<td>-0.649**G4</td>
<td>22.9</td>
</tr>
<tr>
<td>0.650-</td>
<td>0.789***9</td>
<td>3.2</td>
</tr>
<tr>
<td>0.799-</td>
<td>0.948***5</td>
<td>1.8</td>
</tr>
<tr>
<td>Total</td>
<td>280</td>
<td>100</td>
</tr>
<tr>
<td>Mean</td>
<td>0.350</td>
<td></td>
</tr>
</tbody>
</table>

* Non-suitable farmland
**Marginally suitable farmland
***suitable farmland

Source: Survey Data, 2015

Data in the table show that farmland value index ranged from 0.499 to 0.948 with a mean of 0.350. Majority (72.1%) of the food crop farmers cultivated on non-suitable farmlands, 22.9% of them cultivated on marginally suitable farmlands, while few (5%) of them cultivated on suitable farmlands, implying that majority of the farm lands cultivated for food crop production in the study area are not suitable.

3.2. Farm Land Productivity

The productivity of the different farmland values were determined and the results are presented in Table 2.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Non suitable farmland</th>
<th>Marginally suitable farmland</th>
<th>Suitable farmland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Returns of food crops</td>
<td>72551.63</td>
<td>146489.17</td>
<td>217892.38</td>
</tr>
<tr>
<td>Total farmland rent and cost of farmland improvement</td>
<td>59872.45</td>
<td>64992.64</td>
<td>69228.49</td>
</tr>
<tr>
<td>Productivity</td>
<td>1.35</td>
<td>2.25</td>
<td>3.14</td>
</tr>
<tr>
<td>Percentage charge</td>
<td>-</td>
<td>48.15</td>
<td>152.59</td>
</tr>
</tbody>
</table>

Source: Survey Data, 2015

Results in the table show that productivity of farmland increases from 1.35 to 2.25 and 3.14 as farmland value moves from non-suitable to marginally suitable and suitable values respectively, thus making marginally suitable and suitable farmlands about 48% and 133% higher in farm land productivity than non-suitable farmlands, implying that farmland productivity increases with suitability of farmland. This finding is consistent with those of Ohajianya and Asiabaka (2016).
3.3. Factors Influencing Food Crop Farmers’ Productivity in the Different Farm Land Values

To determine the factors influencing food crop farmers’ productivity in the different farmland values, four functional forms of the ordinary least squares multiple Regression model; linear, semi-log, double-log, and exponential were tried.

The double-log function produced the highest value of coefficient of multiple determination (R^2), highest number of significant variables, and conformed to a priori expectations.

The results of the double-log function were presented in Table 3. Results show that the coefficients of multiple determinations (R^2) were 0.469, 0.792, and 0.616 for non-suitable farmland, marginally suitable farmland, and suitable farmland respectively, which implies that about 47%, 79%, and 62% of the variation in food crop farmers’ productivity in non-suitable, marginally suitable and suitable farmlands respectively are explained by the joint action of the explanatory variables included in the multiple regression model.

The coefficients of quantity of farmland rent (X_2), quantity of fertilizer applied (X_3), quantity of organic manure applied (X_4), quality of planting material (X_7), and distance of farmland to farmer’s home (X_8) with respect to the non-suitable farmlands were significant at either 0.05 or 0.01 levels. This implies that these variables influence productivity of food crop farmers cultivating non-suitable farmlands in the study area.

Table 3. Results of Double-log function on factors influencing food crop farmers’ productivity in different farmland values

<table>
<thead>
<tr>
<th>Explanatory variable</th>
<th>Farmland values</th>
<th>suitable farmland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>183.441</td>
<td>146.703</td>
</tr>
<tr>
<td>Farm size (X_1)</td>
<td>0.083</td>
<td>0.055</td>
</tr>
<tr>
<td>Farm land rent (X_2)</td>
<td>(1.792)</td>
<td>(2.787)**</td>
</tr>
<tr>
<td>Quantity of fertilizer applied (X_3)</td>
<td>(-0.039)</td>
<td>(-0.066)</td>
</tr>
<tr>
<td>Quantity of organic manure applied (X_4)</td>
<td>(-2.511)*</td>
<td>(-3.013)**</td>
</tr>
<tr>
<td>Education level (X_5)</td>
<td>0.077</td>
<td>0.082</td>
</tr>
<tr>
<td>Farming Experience (X_6)</td>
<td>(3.065)**</td>
<td>(3.780)**</td>
</tr>
<tr>
<td>Quality of planning materials (X_7)</td>
<td>0.053</td>
<td>0.082</td>
</tr>
<tr>
<td>Distance of farmland to farmer’s home (X_8)</td>
<td>(3.404)**</td>
<td>(4.009)**</td>
</tr>
<tr>
<td>R²</td>
<td>0.469</td>
<td>0.792</td>
</tr>
</tbody>
</table>

Figures in parentheses are t-ratios

* Significant at 5% level
** Significant at 1% level

Source: Survey Data, 2016

For marginally suitable farmlands, the coefficients of farm size (X_1), farmland rent (X_2), quantity of fertilizer applied (X_3), quantity of organic manure applied (X_4), education level (X_5), quality of planting material (X_7), and distance of farmland to farmer’s home (X_8) were significant at either 0.05 or 0.01 levels, which implies that these variables are factors influencing productivity of food crop farmers cultivating marginally suitable farmlands in the study area.
The coefficients of farm size (X₁), quantity of fertilizer applied (X₃), quantity of organic manure applied (X₄), farming experience (X₆), and quality of planting materials (X₇) with respect to suitable farmlands were significant at 0.01 level of probability, implying that these variables are factors influencing the productivity of food crop farmers cultivating suitable farmlands in the study area.

4. CONCLUSION AND RECOMMENDATIONS

The study found that majority of the farmlands cultivated by farmers in Imo State, Nigeria are non-suitable for food crop production due to the influence of natural disasters, and this negatively influences food crop productivity. The productivity of food crops increases with suitability of farmlands. Food crop farmers cultivating non-suitable farmlands should explore measures to improve the fertility of their farmlands or minimize wastage of production resources through reduction in the size of farmland cultivated, while food crop farmers cultivating suitable farmlands should increase their production and improve their farm incomes through allocation of more production resources to food crop production in an optimal manner.

Funding: This study received no specific financial support.

Competing Interests: The authors declare that they have no competing interests.

Contributors/Acknowledgement: All authors contributed equally to the conception and design of the study.

REFERENCES

© 2016 Conscientia Beam. All Rights Reserved.

