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Abstract 
 

This article considers the structure of interest rate, applied for discounting of risky cash flows. The 

purpose of the article is a presentation of ways of reflecting inflation and risks in the calculation of risk 

discount rate. In introduction on base of well-known dependences is shown that risk premium depends 

on inflation rate and (for multiplicative-type models) risk free rate. In the first part of the article three 

Interest rate algebras are presented. They describe the attitude between nominal discount rate, risk free 

rate, inflation rate and risk-premium. This algebras can presents in additive-type or multiplicative-type 

versions and have given risk premium value without detailed description the structure of risk 

premium. The second part of the paper has more detailed attitude between risk premium, risk free rate 

and mathematical expectation of losses because of bankruptcy/default. It is shown that the obtained 

dependences are slightly different and depends on the initial preconditions calculation: the principle of 

arbitration or  the principle of certainly equivalent. 

Key words: Interest rate, risk  free  rate, risk premium, probability of losses 

 

1. Introduction 
 

There are many different interpretations for structure of interest rate: unbiased expectations 

theory, liquidity preference theory, liquidity premium. Also exist many different models for discount 

rate valuation, such as CAPM, MCAPM, APM and etc. However most of this models don’t give 

possibility of direct connection between such parameters as inflation, real rate and risk premium. This 

article contains a version of interest rate algebra sets developed by the author and applicable for the 

interpretation of structure for risk-free (in first part) and risky (in second part) interest rates.  

According to the established tradition, the analysis of the structure of interest rate for the 

purpose of its subsequent use in discounting exercises involves the following relations:  

Irving Fisher Expression [1]: 

,1)1()1(  irr r                                     (1) 

where,  r – nominal rate of interest, 

rr – real rate of interest, 

i – the rate of inflation for the period, 

Furthermore, decomposition of an interest rate into a risk-free component and the risk premium 

can be expressed as [2], [3], [4], [5]: 

,prrr f 
                                                          (2) 
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where, r – the interest rate specific to future cash flows from a project (asset) with a certain 

investment risk,  

 rf – interest rate on risk-free investments, 

 pr – risk premium for bearing the risk of investing into similar projects (assets). 

In turn, the risk-free rate can be represented in an additive form (following the concept of simple 

percents): 

 

,irr frf                                                                      (3) 

 

where, rfr – real interest rate on risk-free investments, 

or in a multiplicative form (following the concept of compound interest): 

 

,1)1)(1(  irr fmfm                                                  (4) 

 

where, rfm – nominal risk-free interest rate used for complex compound interest, 

rfrm – real risk-free interest rate used for complex compound interest. 

Thus, the work of the classics of investment theory affords the conclusion that the level of 

interest rate is a function of the risk-free rate (net of inflation), the rate of inflation, and the risk 

premium component: 

,pr+i+r=r rafr                                      (5) 

1,)1()1()1(  rmfrm pr+i+r+=r                                   (6) 

where, r – is a nominal rate of interest applicable for discounting cash flows from a risky 

investment project (i.e. risky cash flows), 

rfr – real (net of inflation) risk-free rate of interest,  

prra – risk premium applicable in an additive-type model, as in (5), given a separate accounting for 

the inflationary component,   

prrm - risk premium applicable in a multiplicative-type models, as in (6), given a separate accounting 

for the inflationary component,  

rfrm –  the value of the real risk-free rate used in multiplicative-type models, as in (6). 

It is evident that there exist the following relations between prra and prrm :   

,
r

pr

iri+

pr
=pr

f

ra

frm

ra
rm




 1)1(1                        
(7) 

 

),1( fmra r+pr=pr                                      (8) 

where, rf – the value of the nominal risk-free rate. 

If we decompose the real interest rate rr   in expression (1) into the risk-free real rate and the 

(net of inflation) risk premium (pr
extra

r)
1
 (rr = (1 + rfr)(1 + pr

extra
rm) – 1), the following transformation of 

the expression obtains:        

.)1)(1(

1)1)(1)(1(

frm
extra
mrf

extra
rmfrm

extra
rm

extra
rm

extra
rmfrmfrmfrm

extra
rmfrm

r+i+pr+r

=prir+ipr+

pr+prr+ir+i+r

=i+pr+r+=r







         (1a) 

The last components in expression (1a) is the observed (ex ante) risk-premia for the respective 

(i.e. additive or multiplicative) models. These expressions show that the inflation exerts immediate 

influence on the ex-ante risk premium. Moreover, Expression (1a) indicates that the ex-ante risk 

premium is also affected by the value of the implied real risk-free rate.   

                                                 
1 To avoid double-counting in practical terms, only that part of the risk premium (prextra

ra) is to be accounted for in this exercise which is not 

already implicitly assumed in the risk-free rate, since risk-free rate metrics used in practice, arguably, admit of  the presence of a small 

element of risk in  them.    
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1.1. Interest Rate Algebra -1 (IRA-1) 
Expressions (1a) and (1b) demonstrate that the detailed study of the subject of interest rates 

leads to realization that the number of structural representations for interest rates is not exhausted 

merely by the expressions (1)-(4). This is due to the following factors: 

 A risk-free rate can be represented either in nominal (rf) or real (rfr) terms; 

 A risk-free rate may either include some residual risk elements (rf and rfr), or be netted of any 

such elements (rnf and rnfr); 

 A risk-free rate can be determined by the rule of simple (rf, rnf, rnfr) and compound interest (rfm, 

rnfm, rnfrm); 

 The risk premium can be represented differently for the additive (pra) or multiplicative (prm) 

interest rate models; 

 The risk premium can be represented in nominal (pr) or real (prr) terms; 

 The risk premium can be used in conjunction with “risk-free rates” which incorporate some 

residual risk elements - rf, rfr (in this case the risk premium shall be denoted with the “extra” 

superscript pr
extra

), as well as in conjunction with absolute (“pure”) risk-free rates  - rnf, rnfr (in this case, 

the notation for such risk premia does without the «extra» superscript - pr).  

Having regard to these circumstances, an attempt is made below to list all possible detailed 

specifications of the interest rate structure, which can be employed in the context of discounting for 

risky cash flows (in situations where the risk factor is incorporated in the discount rates, and not 

through adjusting the cash flows themselves, as the case may be): 

,pr+i+r=r ranfr                         (9) 

,pr+r=r anfr                       (10) 
,pr+r=r ranf          (11) 

,pr+r=r extra

afr                       (12) 

,pr+i+r=r extra

rafr                       (13) 

,pr+r=r extra

raf                        (14) 

1,)1)(1( rmnfm pr+r+=r                      (15) 

1,)1)(1)(1( i+pr+r+=r rmnfrm                                   (16) 

1,)1)(1( extra
rmfm pr+r+=r                       (17) 

1,)1)(1)(1( i+pr+r+=r extra
mrfrm                               (18) 

1,)1)(1( mnfrm pr+r+=r                      (19) 

1,)1)(1( extra
mfrm pr+r+=r                            (20) 

,pr+r

=pr+iα+iα+r=r

extra
prafpr

extra
rafr



 )1(
             (21) 

,pr+r=

pr+iα+iα+r=r

pranfpr

ranfr  )1(
                    (22) 

where: 

 r – the nominal rate of interest/return that accounts for risks, 

 rnfr - pure real risk-free rate (i.e. one net of all risks and inflation), 

rnf – pure nominal risk-free rate, 

 i – the rate of inflation, 

rf  – nominal risk-free rate, that includes some residual elements of risk in practical terms (residual 

risk elements), 

rfr – real risk-free rate with some residual risk elements, 

rnfm – pure nominal risk-free rate used in multiplicative-type models, 

rnfrm – pure real risk-free rate used in multiplicative-type models, 
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rfm – nominal risk-free rate used in multiplicative-type models, that includes some residual elements 

of risk in practical terms (residual risk elements), 

rfrm – real risk-free rate used in multiplicative-type models, that includes some residual elements of 

risk in practical terms (residual risk elements), 

prrm – full risk premium in the multiplicative representation, net of inflation, 

prm – full risk premium in the multiplicative representation, incorporating inflation, 

prra – full risk premium in the additive representation, net of inflation, 

pra – full risk premium in the additive representation, incorporating inflation, 

pr
extra

m – partial risk premium over and above the residual risk elements in the risk-free rate rf ,  in 

the multiplicative representation (incorporating inflation), 

pr
extra

rm – partial risk premium over and above the residual risk elements in the risk-free rate rf ,  in 

the multiplicative representation (net of inflation), 

pr
extra

a - partial risk premium over and above the residual risk elements in the risk-free rate rf ,  in the 

additive representation (incorporating inflation), 

pr
extra

ra – partial risk premium over and above the residual risk elements in the risk-free rate rf , in the 

additive representation (net of inflation), 

rfpr – risk-free rate with partial account for inflation: rfpr = rfr + αi , 

rnfpr – pure risk-free rate with partial account for inflation: rnfpr = rnfr + αi , 

pr
extra

pra –  partial risk premium over and above the residual risk elements in the risk-free rate rfpr ,  in 

the additive representation (with partial account for  inflation): pr
extra

pra= pr
extra

ra + (1 - α)i,  

prpra – risk premium with a partial account for inflation applicable in the additive models and to be 

used in conjunction with the rnfpr risk-free rate partially accounting for inflation: prpra =  prra +  (1 -  α)i 

, 

α – a share (fraction) of inflation reflected (included) in the risk-free rate, 0 ≤  α ≤ 1, 

(1 – α) – the remaining share (fraction) of inflation reflected (included) in the risk premium. 

It can be ascertained that Models in (21) and (22) reflect valid options for inflation accounting -- 

both in relation to the risk-free rate and the risk premium. 

In addition to the basic expressions (9) - (22), reflecting the variety of designs for the calculation of 

risky discount rate of nominal cash flows also will show how the link between the individual 

components of the rates: 

 

,irr frf 
                                                           (23) 

,irr nfrnf 
                                                        (24) 

,anfrfr rr 
                                                      (25) 

,iprpr raa 
                                                        (26) 

,extra
aaa prpr 

                                                 (27) 

,extra
raraa prpr 

                                              (28) 

,aa
extra
a prpr 

                                                (29) 

,iprpr extra
a

extra
ra 

                                                (30) 

,ara
extra
ra prpr 

                                              (31) 

,1
1

1







m

frm

nfrm

r
r

                                                     (32) 

,
fr

frm

am
r

r


                                                            (33) 

,1)1)(1(  irr nfrmnfm
                                     (34) 
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,1)1)(1(  m
extra
mm prpr

                            (35) 

,1)1)(1)(1(  m
extra
mrm iprpr

                 (36) 

,1)1)(1(  iprpr extra
mr

extra
m                           (37) 

,1
1

1







i

pr
pr m

mr
                                                (38) 

,1
1

1







fm

extra
mr

r

r
pr

                                               (39) 

,1
1

1







i

pr
pr

extra
mextra

mr
                                          (40) 

where, Δa - part of the risk premium, which is integrated into the traditional (used) risk-free rate 

used in additive models, 

Δm - part of the risk premium, which is integrated into the traditional (used) risk-free rate used 

in multiplicative-type models. 

 

1.2. Interest Rrate Algebra -2 (IRA-2) 
As the dealings in actual professional practice are for the most part limited to the observed 

“risk-free” rates which contain (or may contain) the admixtures of risk elements (in other words, we 

have no data on the values of pure risk-free market interest rates rnfr and rnf), practical value attaches 

only to those Expressions, out of the set of Expressions (9)-( 22), which do not contain pure risk-free 

rates  (rnfr and rnf), i.e. to Expressions (12)-(14), (17)-(18), (20)-(21). Since all these Expressions carry 

the “extra” superscript in the notation for risk premia, it now makes sense to do away with using this 

superscript for sheer practicality. To avoid confusion in what follows, let us make use of a new 

notation, removing the “extra” superscript and replacing lower-case letters with the capital ones (it is 

possible, of course, to continue with using the lower-case letters -- bearing in mind that the applicable 

value of the risk premium is only partial, as some of its elements have actually been “woven” into the 

practically observed equivalent for the risk-free rate): 

,+i+r=R rafr Pr                                   (41) 

,+r=R raf Pr
                                  (42) 

,+r=R afr Pr
                                  (43) 

1,)Pr1)(1( rmf +r+=R                                              (44) 

1,)1)(Pr1)(1( i++r+=R rmfrm                                       (45) 

1,)Pr1)(1( mfrm +r+=R                                              (46) 

,+r=R prafpr Pr
                                        (47) 

where, R is an equivalent of r , Pr – of pra
extra

 , and Prpra – of prpra
extra

 in terms of notation 

previously employed in the Expressions (9)-(22). 

As seen from the above expressions, IRA-2 assumes a complete absence of risk elements in the 

risk-free rate. This option algebra, as well as IRA-1, allows for the possibility of presentation of 

models for valuing the discount rate in multiplicative and additive forms. 
 

1.3. Interest Rate Algebra -3 (IRA-3) 
Having regard to the fact that appraisers and investment analysts for the most part limit 

themselves to the consideration of additive-type interest rate models, the immediately preceding 

algebra of interest rates (IRA-2) can be further simplified by excluding from it all the multiplicative-

type models and leaving in only the additive models. Simultaneously, with the multiplicative models 

no longer featuring in the algebra, we shall exclude from the ensuing expressions all “a” subscripts 

denoting the membership in the additive-type model class. As a result, this new, simplest, algebra set 

features only additive models in the following representations: 
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,pr+i+r=r rfr                       (48) 

,pr+r=r rf                                   (49) 

pr,+r=r fr                       (50) 

,pr+r=

pr+iα+αi+r=r

prfpr

rfr  )1(
                            (51) 

where r is the equivalent of R, prr - of Prra,  pr  - of Prra, prpr - of Prpra in terms of notation 

previously used in the Expressions (41) – (43), (47), namely: 

r – is the nominal rate of interest applicable for discounting after-tax cash flows from a risky 

investment project (risky cash flows), 

rfr – real (i.e. net of inflation) risk-free interest rate (essentially reflecting the above mentioned 

“usurious” (i.e. “net-net-net”) interest),  

prr – real (net of inflation) risk premium, 

pr – nominal risk premium that includes the inflationary component, 

ά – a share (fraction) of inflation included (reflected) in the risk-free rate rfpr, 

(1 - ά) – the remaining share (fraction) of inflation included (reflected) in the risk premium prpr. 

As seen from the above expressions, in the General case, inflation can be taken into account as 

the risk-free rate and the risk premium. However, it is important to avoid double counting: in other 

words, inflation can only redistribute between the risk-free rate and a risk premium. 
 

2. Accounting for Default and Insolvency Risks (IRA-4) 
 

Let us now take up the subject of the impact of risk on discount rates from a different 

standpoint. The lack-of-arbitrage-opportunities condition can be expressed as follows: 

- in additive form: 

,r=pk+pr fdd  )()1(1                                   (52) 

- in multiplicative form: 

 

    ,1)(1)1(1 1 fmdd rpkpr             (53) 

where, pd – probability of insolvency/default (or, of a shortfall in payments, put simply),  k –  

losses given default (as a fraction of the amount outstanding),  

rf – risk-free rate used in additive-type models,  

rfm – risk-free rate used in multiplicative-type models,  

r1 – expected return on investment into shares, at a favorable outcome.  

On the basis of Expressions (52), (53) it is possible to obtain an expressions linking the above-

mentioned expected return with the risk-free rate and the parameters of risk: 

.
1

1
d

df

p

kp+r
=r




                                   (54) 

.
)1(1

1m
dd

dfm

kpkp

kp+r
=r




                                           (55) 

Expressions (54)-(55), in turn, is amenable for the quantification of the risk premium: 

-given the additive specification for the risk-free rate and the risk premium: 

,
p

)r+(kp
=

r
p

kp+r

=rr=pr

d

fd

fa

d

df

f1a1











1

1

                     (56) 

- given the multiplicative specification for the risk-free rate and the risk premium: 
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.
)1)(1(1(

))1((

1
1

1

fmdd

dfmd

fm

1m
m1

rkpk+p

kpkr+kp
=

r+

r+
=pr







     (57) 

On the other hand, the relation between the risky rate and risk parameters can be obtained from 

a different consideration: 

,
1

1

1

1

f

d

r

kp

r 




                                   (58) 

where, the numerator in the right-hand side of this equation reflects the adjustment to expected 

cash flows that transforms them into their certainty equivalents. Solving Equation (58) for r results in 

the following expression for the risky rate: 

,
1

2
kp

kpr
r

d

df






                                  (59) 

where r2 –  is the estimate for risky rate obtained on the basis of Condition (58). 

Expression (59) also allows for deriving an expression for the risk premium: 

- for the additive relation between the risk-free rate and the risk premium: 

,
kp

)r+(kp
=

r
kp

kp+r
=

rr=pr

d

fd

f
d

df

fa2












1

1

1

2

                           (60) 

- for the multiplicative relation between the risk-free rate and the risk premium: 

.
1

1
1

1 2
2

kp

kp

r

r
pr

d

d

f

m










                        (61) 

Despite their similarity, the Expressions (54) and (59) are not identical. The author of this Paper 

is hard put to give a conclusive explanation to the disparity between the formulas, however, it can be 

assumed that its nature is associated with the fact that in real life the number of possible event 

scenarios is significantly above the two outcomes implied in the initial lack-of-arbitrage hypothesis.     

In this regard, and as of the writing, there is a reason to repose greater trust in the Expression 

(59).  

Subsequent to deriving these formulas, the author of this Paper found in the literature[6]
2
 an 

expression similar (even to the point of notation) to one in (54), which, as suggested in the source, can 

be used for estimating returns on risky bonds. The respective passage from the work of W. Sharpe is 

reproduced below:   

“How high should a default risk premium be for a bond? According to one model [7], the answer 

depends both on the probability of default and on the possible financial losses of bondholders given 

the default. Consider a bond whose probability of default is constant every year (provided that the 

payments for previous years have been met). Let the probability of default during a given year be 

denoted as pd. Assume that, if the payments are remiss on the bond, the owner of each bond recovers a 

part, equal (1 - λ), of its market price in effect a year ago. According to this model, the bond shall be 

fairly priced, if its yield to maturity, “y”, equals to: 

                                                 
2  In W. Sharpe “Investments” (Russian edition, by Infra-M Publishers, Moscow, 2007). pp. 432-433, at the point where the work of Gordon 

Pye (Gordon Pye «Gauging the Default Premium», Financial Analysts Journal, 30, no.1 (January/February 1974), pp. 423-434) is being 

referenced.  
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,
1 d

d

p

py
y







  (15.4

3
)                     (62) 

where, y denotes the expected yield to maturity of the bond. The difference, d, between the 

expected yield to maturity “y” and the expected [baseline] yield  y  has been previously alluded to as 

the default risk premium. Using the expression (15.4), we can see that this difference for fairly priced 

bonds should be equal to: 

.
1

y
p

py
yyd

d

d 




















       (15.5)  ”            (63) 

(end of the quote). 

In conclusion, it bears mentioning that cash flow discounting can be exercised in one of the two 

following ways: 

 Each period payment is discounted using a discount rate specific to that period; 

 A single discount rate is used for all periods - which corresponds to the “duration” of expected 

cash flows. The problem encountered with this approach is the difficulty of giving 

simultaneous/summary estimation to a set of rates in the form of an average expected interest rate 

(scoping over the investment horizon) – estimation which would not fail to reflect all the possible risks 

in the capital market.    
 

3. Conclusions 
 

On a final note, it is necessary to sum up the principal point covered in this paper. 

 First of all, separation of components of risky interest rate on risk-free rate and risk premium 

can be done in a relatively correct ways and still plenty of wrong ways. Perhaps this is why so often 

errors in assessing the values of the discount rate, when often overlooked factors, or are counted twice. 

 Secondly, the risk premium applied when calculating the nominal discount rates, in addition to 

risk factors, also depends on the level of risk-free interest rates and inflation (see (1a), (54), (55), (59)). 

 Thirdly, the value of the risk premium has a nonlinear dependence of the expected 

losses/damages/bankruptcy or loss of the shortfall in expected revenues (see (56), (57), (60), (61)). 

 Fourthly, model estimates of the risk premium should correspond to the used model of the 

calculation of the  discount rate (see (54)-(57, (59)-(61)). 

 Finally, taking into account the existing «backlash» in the values of the nominal risky interest 

rates under equal values of the input parameters of the model (because of the differences in 

models (54), (55), (59)), it should be acknowledged that at the time of writing, the minimum 

error values calculation risky rate is from 5% to 10% (in relative percentages).  

Received in this article the results can hope to reach a more accurate calculations and the avoidance 

of errors in estimating discount rates. 
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4.Appendix 

 
4.1. Examples of Calculations with the use of Algebras of Interest Rates 

In this Annex consider the examples of calculations using the above expressions. For easy 

comparison of the text of the application will be most closely correspond to the above text main part of 

the article. 

Let's begin with the expression I. Fischer. Let the value of the real risk-free rate is 7.27%, 

inflation rate - 10%. Then, in accordance with (1) we obtain the value of the nominal interest rate: 

0.18.  1-0.1)0.0727)(1(1

1)1()1(



 i+r+=r r
 

 

Now let assume that the nominal risk-free rate is 13%, and a risk premium of 5%. 

Then, in accordance with (2) we get:  

.18.005.013.0 

pr+r=r f
 

 

(2A) 

 Now suppose that the actual (cleared from inflation) risk-free rates used in a 

simple compound interest is 3%. Then, in accordance with (3) the value of the nominal 

risk-free rate, calculated in the framework of the additive model (following the concept 

of simple interest) will be as follows: 

 

 

(1A) 

.13.01.003.0 

 irr frf

           (3A) 

Let the value of real (cleared from inflation) risk-free rates used for complex compound the 

interest is 2.7%. Then, in accordance with (4) the value of the nominal risk-free rate, calculated in the 

framework of the multiplicative model (following the concept of compound interest) will be as 

follows
4
: 

.13.011.1027.11)1)(1(  irr frmfm      (4A) 

Thus, from the works of the classics, you can conclude that the level of interest rates is a 

function of the cleared from inflation risk-free rate, inflation and premium for the risk: 

,pr+i+r=r rafr 18.005.01.003.0            (5A) 

 1111 )pr+(i)+()r+(=r rmfrm  

0.18,1-1.0441.11.027

1)1()1()1(



 rmfrm pr+i+r+=r
     (6A) 

 

where the value of the prrm - risk premiums applied when you use the multiplicative model of 

type (6A) with a separate accounting of the inflationary component is specifically calculated. 

It is obvious that between the prra and prrm there are the following dependencies: 


 )r+(

pr

iri

pr
=pr

f

ra

frm

ra
rm

1)1(1
 

 

                                                 
4 In the example we specially selected parameter values rfr and rfrm so that the calculated over one year interest are equal (i.e., rf = rfm), 

implying capitalization of interest once at the end of the year. 
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,044.0
13,01

05,0

)1,01(027,01,01

05,0






        (7A) 

 

 )r+(priirpr=pr frmfrmrmra 1)1)1((  

.05.0)13.01(044.0                           (8A) 

(up to the rounding) 

If we decompose the real interest rate rr   in expression (1) into the risk-free real rate and the 

(net of inflation) risk premium (pr
extra

r)
5
 (rr = (1 + rfr)(1 + pr

extra
rm) – 1), the following transformation of 

the expression obtains:        

=i+pr+r+=r extra
rmfrm 1)1)(1)(1(   

+prr+ir+i+r extra
rmfrmfrmfrm  

=prir+ipr+pr+ extra
rmfrm

extra
rm

extra
rm  

 )1)(1( frm
extra
mrf r+i+pr+r  

.18.0027.11.1044.013.0                   (1aA) 
 

4.2. Interest Rate Algebra -1 (IRA-1) 
Consider the following calculations with the use of IRA-1. The parameter values used will 

correspond to the previously adopted, or (for the new parameters) will be used by other values. The 

order of values of the parameters will strictly correspond to the sequence of model parameters: 

 

,pr+i+r=r ranfr 18.007.01.001.0  (9A) 

,pr+r=r anfr 18.017.001.0  (10A)                                       

(9П) 

 

 

  

,pr+r=r ranf 18.007.011.0   (11A) (11П) 

,pr+r=r extra
afr 18.015.003.0   (12A) (12П) 

  
,

pr+i+r=r extra
rafr

18.005.01.003.0 


           (13A)               (13П) 

,

pr+r=r extra
raf

18.005.013.0 


                 (14A)                (14П) 

,18.01-1.0631.11

1)1)(1(



rmnfm pr+r+=r
            (15A)                (15П) 

0.18,1-1.11.0631.009

1)1)(1)(1(



i+pr+r+=r rmnfrm

    (16A)                (16П) 

0.18,1-1.0441.13

1)1)(1(



extra
rmfm pr+r+=r

     (17A)  (17П) 

0.18,1-1.11.0441.027

1)1)(1)(1(



i+pr+r+=r extra
mrfrm

   (18A)  (18П) 

                                                 
5 To avoid double-counting in practical terms, only that part of the risk premium (prextra

ra) is to be accounted for in this exercise which is not 

already implicitly assumed in the risk-free rate, since risk-free rate metrics used in practice, arguably, admit of  the presence of a small 

element of risk in  them.    
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0.18,1-1.1691.009

1)1)(1(



mnfrm pr+r+=r
           (19A)  (19П) 

0.18,1-1.1481.027

1)1)(1(



extra
mfrm pr+r+=r

   (20A) (20П) 

,

pr+r

=pr+iα+iα+r=r

extra
prafpr

extra
rafr

18.008.01.0

07.01.0)7.01(

1.07.003.0

)1(









  (21A) 
(21П) 

.18.01.008.0

07.01.0)7,01(

1.07.001.0

)1(











pranfprra

nfr

pr+r=pr

+iα+iα+r=r

        (22A) 
(22П) 

 

In addition to the basic expressions (9) - (22), reflecting the variety of designs for the 

calculation of risky discount rate for nominal cash flows also will show how the link between the 

individual components of the rates is exist: 

,13.01.003.0  irr frf                      (23A) 

,11.01.001.0  irr nfrnf                                               (24A) 

,03.002.001.0  anfrfr rr                                               (25A) 

,17.01.007.0  iprpr raa                                               (26A) 

,02.015.017.0  extra
aaa prpr                                              (27A) 

,02.005.007.0  extra
raraa prpr                                          (28A) 

,15.002.017.0  aa
extra
a prpr                                         (29A) 

,05.01.015.0  iprpr extra
a

extra
ra                                            (30A) 

,05.002.007.0  ara
extra
ra prpr                                      (31A) 

,009.01
018.1

027.1
1

1

1







m

frm

nfrm

r
r                                             (32A) 

,018.0
03.0

027.0
02.0 

fr

frm

am
r

r
                                         (33A) 

,11.0111.1009.1

1)1)(1(



 irr nfrmnfm
                                                      (34A) 

,169.01018.11486.1

1)1)(1(



 m
extra
mm prpr

                    (35A) 

,169.01018.11.1044.1

1)1)(1)(1(



 m
extra
mrm iprpr

    (36A) 
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,148.011.1044.1

1)1)(1(



 iprpr extra
mr

extra
m

                  (37A) 

,063.01
1.1

169.1
1

1

1







i

pr
pr m

mr                                          (38A) 

,044.01
13.1

18.1
1

1

1







fm

extra
mr

r

r
pr                         (39A) 

.044.0

1
1.1

148.1
1

1

1









i

pr
pr

extra
mextra

mr
                  (40A) 

 

4.3. Interest Rate Algebra -2 (IRA-2) 
Consider the following calculations with the use of the IRA-2. The parameter values used will 

correspond to the previously adopted, or (for the new parameters) will be used by other values. The 

order of values of the parameters will strictly correspond to the sequence of model parameters: 

,+i+r=R rafr 18.005.01.003.0Pr   (41A) 

,+r=R raf 18.005.013.0Pr   (42A) 

,+r=R afr 18.015.003.0Pr   (43A) 

0.18,1-1.0441.13

1)Pr1)(1(



rmfm +r+=R
 (44A) 

0.18,1-1.11.0441.027

1)1)(Pr1)(1(



i++r+=R rmfrm
 (45A) 

0.18,1-1.1481.027

1)Pr1)(1(



mfrm +r+=R
 (46A) 

,+r=R prafpr 18.008.01.0Pr   (47A) 

 

 

 

 

 

4.4. Interest Rate Algebra -3 (IRA-3) 
Consider the following calculations with the use of the IRA-3. The parameter values used will 

correspond to the previously adopted, or (for the new parameters) will be used by other values. The 

order of values of the parameters will strictly correspond to the sequence of model parameters: 

,

pr+i+r=r rfr

18.005.01.003.0 


       (48A)  

,

pr+r=r rf

18.005.013.0 


               (49A) (49П) 

,

pr+r=r fr

18.015.003.0 


               (50A) (50П) 
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.18.008.01.0

05.01.0)7.01(

1.07.003.0

1









prfpr

rfr

pr+r

=pr+α)i(+αi+r=r

(51A) 
(51П) 

 

Assessment of Risk Premiums for Probable Bankruptcy, Defaults, Arrears (Interest 

Rates Algebra-4 (IRA-4))  

 

Let the values of pd = 0.1 and k = 0.5. Then from (52) and (53) can be obtained expressions 

connecting the specified expected return on risk-free rate and the risk variables: 

 

,

p

kp+r
=r

d

df

2.0
1.01

5.01.013.0

1
1












 

 

(54A) 

 

 

.2105.0

)1.05.05.01(1.01

5.01.013.0

)1(1
1m














dd

dfm

kpkp

kp+r
=r

               (55A) 

From (54) and (55), we can obtain expressions for the risk premiums: 

- under the additive-type dependence between the risk-free rate and the risk premium: 

 

,
p

)r+(kp

=r
p

kp+r
=rr=pr

d

fd

fa
d

df

f1a1

07.0
1.01

)13.05.0(1.0

1

1
















 
(56A) 

- under the multiplicative-type dependence between the risk-free rate and the risk premium: 

0.071.

0.13)0.1))(10.5-0.50.1(1-(1

0.1))0.5-0.50.13(1(0.50.1

)1))(1(1(

))1((

1
1

1





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









fmdd

dfmd
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1m
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r+kpkp

kpkr+kp

=
r+

r+
=pr

 

(57A) 

 

On the other hand, the relation between the risky rate and risk parameters can be obtained 

from a different consideration: 

,
1

1

1

1

f

d

r

kp

r 




                          (58) 

where, the numerator in the right-hand side of this equation reflects the adjustment to 

expected cash flows that transforms them into their certainty equivalents. Solving Equation 
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(58) for r results in the following expression for the risky rate: 

.189.0
5.01.01

5.01.013.0

1
2












kp

kp+r
=r

d

df

           (59A) 

Expression (59) also allows for deriving an expression for the risk premium: 

- for the additive relation between the risk-free rate and the risk premium: 

,

kp

r+kp
=

r
kp

kp+r
=

rr=pr

d

fd

f
d

df

fa2

059.0
05.01.01

)05.01(5.01.0

1

)1(

1

2


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





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



                           

(60) 

- for the multiplicative relation between the risk-free rate and the risk premium: 

0.053.
0.050.1-1

0.050.1

1
1

1

1 2








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
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r+

r+
=pr

d

d

f
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(61) 

 

 

 Consider the following calculations with the use of the IRA-2. The parameter values used 

will correspond to the previously adopted, or (for the new parameters will be used by 

other values. The order of values of the parameters will strictly correspond to the 

sequence of model parameters: 

 (49П) 

 (50П) 

 


