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Abstract

In this paper we present the Double Weighted Inverse Weibull DWIW, taking one type of weighted
function, W (x) = x, and using the Inverse Weibull distribution as original distribution, then we
derive the pdf, cdf with some other useful staistical properties.

1. Introduction

Weighted distribution enables us to deal with model specification and data interpretation
problems. Fisher (1934) and Rao (1965) introduced and unified the concept of weighted distribution.
Fisher (1934) studied on how methods of ascertainment can influence the form of distribution of
recorded observations and then Rao (1965) introduced and formulated it in general terms in connection
with modeling statistical data where the usual practice of using standard distributions for the purpose
was not found to be appropriate. Rao identified various situations that can be modeled by weighted
distributions, where the recorded observations cannot be considered as a random sample from the
original distributions. This may occur due to non-observability of some events or damage caused to the
original observation resulting in a reduced value, or adoption of a sampling procedure which gives
unequal chances to the units in the original.

Weighted distributions were used frequently in research related to reliability bio-medicine,
ecology and branching processes can be seen in Patil and Rao (1978), Gupta and Kirmani(1990),
Gupta and Keating(1985), Oluyede (1999) and in references there in. Within the context of cell
kinetics and the early detection of disease, Zelen (1974) introduced weighted distributions to represent
twhat he broadly perceived as length-biased sampling (introduced earlier in Cox, D.R. (1962)). For
additional and important results on weighted distributions, see Rao (1997), Patil and Ord(1997), Zelen
and Feinleib (1969), see El-Shaarawi and Walter (2002) for application examples for weighted
distribution, and

there are many researches for weighted distribution as, Priyadarshani (2011) introduced a new
class of weighted generalized gamma distribution and related distribution, theoretical properties of the
generalized gamma model, Jing (2010) introduced the weighted inverse Weibull distribution and beta-
inverse Weibull distribution, theoretical properties of them, Castillo and Perez-Casany (1998)
introduced new exponential families, that come from the concept of weighted distribution, that include
and generalize the poisson distribution, Shaban and Boudrissa (2000) have shown that the length-
biased version of the Weibull distribution known as Weibull Length-biased (WLB) distributin is
unimodal throughout examining its shape, with other properties, Das and Roy (2011) discussed the
length-biased Weighted Generalized Rayleigh distribution with its properties, also they are develop the
length-biased from of the weighted Weibull distribution see Das and Roy (2011). On Some Length-
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Biased Weighted Weibull Distribution, Patil and Ord (1976), introduced the concept of size-biased
sampling and weighted distributions by identifying some of the situations where the underlying
models retain their form. For more important results of weighted distribution you can see also
(Oluyede and George (2000), Ghitany and Al-Mutairi (2008), Ahmed ,Reshi and Mir (2013),
Broderick X. S., Oluyede and Pararai (2012), Oluyede and Terbeche M (2007)).

Suppose X is a non-negative random variable with its pdf f(x), then the pdf of the weighted
random variable X, is given by:

£ () =290y 50 ®

oy
Where w(x) be a non-negative weight function and

i, = E(w(X)) < co. When we use weighted distributions as a tool in the selection of
suitable models for observed data is the choice of the weight function that fits the data. Depending
upon the choice of weight function (X)), we have different weighted models. For example, when

w(x) = x, the resulting distribution is called length-biased. In this case, the pdf of a length-biased
(rv) X, is defined as

fito =22 @

Where p = E(X) < oo .More generally, when w(x) = x°; ¢ = 0, then the

resulting distribution is called size-biased. This type of sampling is a generalization of length-biased
sampling and majority of the literature is centered on this weight function. Denoting

[, = E(x®) < oo, distribution of the size-biased (rv) X of order ¢ is specified by the pdf
C
i) =219 ®)
He

Clearly, when ¢ = 1, (1) reduces to the pdf of a length-biased (rv).
In this paper we present the Double Weighted Inverse Weibull DWIW, taking one type of

weighted functions, Wy (x) = x w5 (x,8) = x?, and using the Inverse Weibull distribution as
original distribution, then we derive the pdf, cdf, and some other useful distributional properties.

1.1. Definition
The Double weighted distribution is given by:-

fi ;) = w) fffF{cxj , x=0,c=0 (4)
Where
W= fﬂm w(x) f(x)F(cx)dx
where
1) w(x)=x,

2) w(x) = F(ex), F(cx) depend on the original distribution f (x).
2. Double Weighted Inverse Weibull Distribution

Consider the first weight function W (x) = x and the probability density function of inverse
Weibull of cX given by :-

flex; o, B) = ﬁ(ca]‘ﬁx‘ﬁ‘le‘{“ﬂ_ﬁ , cx=0,ca >0
So that the distribution function
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Flex;a,B) = e-laen)™ o c,B >0
And
W = f; w, (x) F(x)F (cx)dx

= f: xBaF xB-1g~(@)F o—lae)™F gy
= Ba~F f: rBe-leP+1)@n) ™ 4,

i

B

Nowlet ¥ =(cF+1)(a)F = x=—T—
{c'-‘g+l} F a

1 1

N ra-3
= dx= S dy = W = ﬁi_i
{c“-‘g+1} B 5o a{c“-‘g+1} B

Then the probability density function of the Double Weighted Inverse Weibull distribution DWIWD,
when w; (x) = x, is given as :-

1
. _ B F(Fa) P g (cBaa)(an) P
fwi {:x* &, JEJ Cj - .T‘{l—'%:] X = (5)

Forx=0,ca=0 =1

Now let w, (x,8) = x% , 8 € R, (where R is the real numbers set).
The probability density function of DWIWD is:-

g
g g lm=
f~ (X'(I ﬁ c 5"] _ ﬁﬂa ﬁ{ﬂ "Z"‘l} A :]Cufi'—{,|9+1]€—I[|:‘-'5r+1]I{.:m¢j'-"r"r g ‘::ﬁ
',l'yz ¥ » » » l—'{l_E:] »
(6)
Note that if & = 1 then the distribution becomes as f;,,, (X; @, B, ¢).

The cumulative function of DWIWD is given by:-

1
_'B+1 _JS 1—3 _ _
F, (x;a,B,¢) = pa e ) f;rﬁe—{c Be1)(at)™F g4

1

1'{1—3]
—B+1( 8 }1‘%3 1
_ & c 1+1 1 J‘{Jﬂ 5 } g _}J_E e_.}"d}}
l'{l—E:] _-'3+1|[c ,B+1]|1__ e P41 J(ax)”
a3 f{ﬂ‘ﬁﬂ}{aﬂ‘ﬁ Y e 7 dy
{c "3+1}{|:rx] B -1 _
= Fa~¥
1-{1__:] Jr .}J e (i.}JI
}.f{l——, (e B +1)(ax)—Fy
=1-——7= r @)

l_{l—E:]

Where
e B ax) B 2
}f(l—E (c™ +1)(ax)~ -'9) = jﬂ{ +1)(@x) y Ee¥dy
And
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}r{l—% , (7B +1)(ax)—F)

E.(xa fB,c,8)=1— 8
w, (6@, B,¢,6) s ®)
B
2.1. Moments
2.1.1 Moments of DWIWD
Lemma 1.
The k ** non-central moment of DWIWD when w, (x) = X is given by
k+1
e 1_{1—?:]
Efwiix )= N3 , k=12,..andf = (k+1) (9)
o¥(c=F+1) -'31'{1—'%:]
Proof:
Using equation (5), the K non-central moment is given by
1
, 1
ey _ BarPleFea) B o o (Baq)(ax) B
Ef,, (xF) = rah J, xFe dx
_1
i)

v ¥

Lety = (¢ +1)(ax) P =xF = g " =m,
(r +

1
_y BT -
dx:y—_id_}’,:}!:{w » X U
,Eafl[c_-'s'+1} E 0 ; X =2
41 k1
iy Bt FlePr) F oo y Py B yeVdy
Ef"’i{:x j: 1"{1_&] 1] LK -1
B [ B+R(c=B1+1) BlpalcB+1) B
1 w KA1
= 3 Jru y £ e Ydy
ak(c=F+1) -'31'{1—'%]
k+1
rl1—=
_ ( £ ) .
III{{C_'B+1} -'31'(1—%)
Result 1.1.

If Xis distributed DWIWD when Wy [x] = X, then the mean, variance, coefficient of variation,
skewness and kurtosis are as follows

Z
p 2 p103—p
Ppw, () =——"—73—, 0, () =—"T"""73—,
alc=F+1) Fp, a(c=F+1) Fp,?
1
lo103—p2°]2 P1°ps—3p1papat2ps®
CL}-W:. -, CSfW:. - 3
P2 lp1pa—pz2]2
fps—4p,* +6 —3p,°
CKf,,, = 1 Ps pl[ P2Ps g]iz'ozpa P2 respectively, where
P1Pa—Pz
5
p. = F(I—E),,{? Sss=12,..
Proof

Using the form (9), then we can prove the following:
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The mean as
1'{1—%]
M, () = -t , x>0,8>1a>0
m{c“-‘s+1} -Bf{l—%]
=—F (10
a{c“-‘g+1} -'S'pi
The variance is
1 =1 = 2
? ( ]_ r(l_E)r(l_E)_(r{l_E]) — PiPa—Pzz
O fwy XJ = Z T = 2 (11)
a?(c B 1) ﬁ(rql—E]) w2(cB+1) Bp,2
The coefficient of Variation
1
1 3 2 4212 1
V., =Z= [r(l_ﬁjr(l_ﬁ)_(r“_ﬁﬂ ] _ lpips-p,°I2 (12)
fors # l'{l—%] Pz

The coefficient of skewness

(r{1—§j)z P{l—%)— ar(1- jr{l

r(1-2)v2(r(2-2))

E'wa1 -

2

_ P1°Ps—3p1P2p3+202
= ]

lp1pz—pz27l2
The coefficient of kurtosis is
1

r(a-2)r(1-2)-(r(a-2 j)z]

2
z

(14)

(r{l—%,:l )3 r{1—%)— 4(r{1—§] )z P{l—éjr‘{l—%)+6F{1—§]P{1—§]r‘{1—%)—3(1"‘{1—%) )4

[r(a-2r(1-2)~(ra-2)°]

_F fps5—4p1°Papst6p1p203—3p2"
lp1pa—p2?1?

Lemma 2.

(15)

The k™ non-central moment of (DWIWD) when w, (x, 8) = x%is given by

k+6
] )

ak(c=F11) -‘31'{1—%]
PLk+6

_E
o¥(cF+1) Fpg

r(1—

Efwz Exk ) - ' k

Proof

1,2,..

(16)

Using the similar method that has followed in Lemmal. , we can prove this lemma.

[ |

Result 2.1.

If X is distributed DWIWD when w, (x) = x?,
skewness and kurtosis are as follows

.u'fwz {:I] — Pi48

a(cF+1) Fpg

F Jg_fwz(x] ==

then the mean, variance, coefficient of variation,

PEO2+6—P" 145
2
a?(cF+1) -szﬁ.
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CI.'}- = [PEPZ+E_'021+I5']Z CS_;" _ _ F"ZEP3+E_3PEP1+EP2+E‘32931+B
Wy ’ wo 2
Pat6 [Pepz+6—0%,46]°

P 5Pa+6—4P" 5P1+6P2+6+608P1+6P2+6—30" 115
2
[pepara—p2 46l

p. = r(l——) B>ss=12,..

C waz == respectively, where

Proof
Using the form (9), then we can prove the following:
The mean is
Py, (X) = , x=>0,>1,a8 =0

a(cB+1)” -'31'{1— »

P1+E_i (17)
a(cF+1) Ppg

The variance is

r z+ T _15‘ B
0% pu, (X) = (g ﬁ_; a5 _ PoPare P yss (18)
a?(cB+1) -B(l'{l—ﬁjj a?(c B +1) -'3,025
The coefficient of Variation is
i
V. — [1"{1-%)1"(1-1;] (ril‘ﬂj] ] _ [PE‘PHE—PZHE]‘% 19)
fwe ra-29 pi+8

The coefficient of skewness

Cfw, =
(r(2-9)) r(a-50)-sr(:- (-5 (-2 2(r(2-259))
- 9rG=0-(r(229) |

2 2
P 5 Pa+6—3P8P14+6P2482P
g8 a 1+85 (20)

6 p2+6-p7 4 46]2
The coefficient of kurtosis
CKsz =
(r[l—%}jsr[l—ﬂ ( fl——}J rfl—‘*’ﬁ}rf1—5+6}+6rf1——}rfl—'+6}rf1—"*’E ( fl—ﬁ )Id
[F-9rG-29)-(ra-=5)T

@) =

2% 5 P248—2P° gP1468P2 48 +608P146P=248—30" 145
=
lespzr6—P2, 4ol
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Table-3.1. Shows the mode, mean, standard deviation (STD), coefficient of variation (CV,, ),

coefficient of skewness (CSg,,_) and coefficient of kurtosis (CKg,, ) with some values of the

parameters ¢, § and ¢, where w; (x) = x.

@« B ¢ Mode Mean STD VAR CViyy, CSpyy  CKpyy
1 4 2 1.0153 14685 1.0781 1.1624 0.6436 Inf Inf
3 1.0031 1.4509 1.0652 1.1346 0.6436 Inf Inf
6.2 10002 1.4467 1.062 1.1280 0.6436 Inf Inf
12 1.0000 1.4464 1.0619 1.1277 0.6436 Inf Inf
1 41 2 1.0139 1.4418 0.9159 0.8389 0.6058 42.5267 47.88950
5 1.0062 1.2870 0.3152 0.0994 0.4056 5.8578 .9007
8 1.0005 1.1251 0.0564 0.0032 0.2023 2.5156  0.9007
9 1.0002 1.1045 -0399 0.0016 0.1741 2.2661 0.9873
2 5 2 0.5031 0.6435 0.1576 0.0248 0.4056 5.8578  -Inf
3 0.3354 0.4290 0.1051 0.0110 0.4056 5.8578  -Inf
5 0.2012 0.2574 0.0630 0.0040 0.4056 5.8578  -Inf
9.3 0.1082 0.1384 0.0339 0.0011 0.4056 5.8578  -Inf

(-inf: — SO, inf: ©O)

Table-3.2. shows the mode, mean, standard deviation (STD), coefficient of variation (CI"}WZ),

coefficient of skewness (CSpy,.) and coefficient of kurtosis (CKpy,_) with some values of the

parameters &, 2, ¢ and 8, where w, (x) = x%.

@ B ¢ 6 Mode Mean STD VAR  CVg, CSpu, CKpy,
2 5 2 -2 04580 05206 0.1192 00142 0.2291 22195 219.7592
-12 04677 05418 0.1381 0.0191 0.2548 25690 54.1775
0 04851 05857 0.1840 0.0339 0.3141 35351 -47.3925

2 05260 0.7494 0.4677 0.2187 0.6241 Inf -Inf
1 5 1 -2 05228 05944 01361 00185 0.2291 22195 219.7592
2.3 04565 05190 0.1189 0.0141 0.2291 2.2195 219.7592
4 04552 05175 0.1185 0.0141 0.2291 2.2195 219.7592
6 04552 05174 0.1185 0.0140 0.2291 2.2195 219.7592
2 51 2 -2 04592 05207 0.1171 00137 0.2249 21949  231.2975
6 04685 0.5208 0.1009 0.0102 0.1938 2.0163  356.6062
7 04757 05204 0.0874 0.0076 0.1680 1.8784  545.2625
8 04807 05197 0.0771 0.0059 0.1484 1.7784  792.8087
22 5 2 -2 04163 04733 01084 00118 02291 22195 219.7592
3 0.3053 0.3471 0.0795 0.0063 0.2291 2.2195  219.7592
4 0.2290 0.2603 0.0596 0.0036 0.2291  2.2195  219.7592
7.3 0.1255 0.1426 0.0327  0.0011 0.2291  2.2195  219.7592

(-inf: —©0, inf: 00)

The Figures below shows the plot of CV,, , €Sy, and CKf,, for (DWIWD) where

w; (x) = x.
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Figure-3.1. Graph the (CV%,,, ) of (DWIWD)

Coefficient of WVariation CV of (DVWIW) distribution

L L L L L L
3 4 5 5] T G 9 10

Figure-3.2. Graph the (CSy,,,, ) of (DWIWD)
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Figure-3.3. Graph the (CKf,, ) of (DWIWD)
CK of (DWIWD)
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From Figures (3.1, 3.2, 3.3), we note that CVY,, , CSp,, and CKF,, do not depend on the
parameters & and c. And from Figure 3.1 it is clear that there is no CVf,, when 1 < B < 3.

We find the maximum value of CV,, is 2.3354 for B = 3.1. The relationship between 8 and
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CV¥,,, is shown in Figure 3.that the larger the value of 8 is the smaller the value of CVf,, . The
relationship between 5 and Csfwi is shown in Figure3.2. from our calculations it's clear that there
is no CS¢,, when 1 < B <4 and the maximum value of €Sy, is 42.5267 for § =4.1. If
CSfy,, = 0 then( Mean > Mode) and the pdf of DWIWD is skewed to the right when (Mean =
Mode) see table 3-1. If CSp,, =0 then the pdf of it shape is symmetrical when (Mean = Mode).
Where CKf,,,;i:B then the pdf shape is become like Normal pdf, and the pdf of it shape is more
peaked than the Normal pdf when the value of CKf,,, = 3. The pdf of (DWIWD) shape is flatter
than the Normal pdf when the value of CKg,, << 3. The relationship between B and CKg,, is
shown in Figure 3.3. from our calculate it is clear that there is no Cwai when1 < < 5. then
we obtain the maximum value of CK,,, is 578.2554 at 8 =5.1. The Figures below shows the plot of
CVsy,,, CSpyy_ and CKG,,_ for (DWIWD) where w; (x) = x?.

Figure-3.4. Graph the (CI"}WZ) of (DWIWD), where & take the values (1,0,-1,-2).

CV of DWIWD
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T
theta=1
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w
w

Figure-3.5, Graph the (CV5,,,_) of (DWIWD), where 8 take the values (6,7,7.3,9).
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Beta=7
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Figure-3.6. Graph the (CS¢,,_) of (DWIWD), where 8 take the values (2,0,-2,-6).

Al-Kadim, K. A and Hantoosh, A. F.
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Figure-3.7. Graph the (CS¢,,_) of (DWIWD), where 3 take the values (6,7,9,12).
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Figure-3.8. Graph the (CKf,,_) of (DWIWD), where 8 take the values (2,0,-2,-6).

x 10° CK of DWIWD
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Figure-3.9. Graph the (CKf,,_) of (DWIWD), where /3 take the values (8,9.3,11,13).
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From Figures (3.4, 3.5, 3.6, 3.7, 3.8, 3.9), we note that CVf,,,_, €Sy, and CKg,,_ do not

depend on the parameter . Now from Figure 3.4 it is clear that there is no CL}wi when
l=f<3af=1
We find that the maximum value of CV,,, is 3.0372 for f =3.06,and 6 = 1.
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The relationship between ,{? and CL‘}WE is shown in Figure 3.4, the larger the value of ,E’ gets
the smaller value of CVf,,, .

And the relationship between & and CL‘}WE is shown in Figure 3.5, the larger the value of &
gets the larger(maximum) value of CVg,, is 35705 for @ =3.96and 8 = 6.

The relationship between [5 and C-S'fwz is shown in Figure3.6, also the relationship between
6 and CS¢,,_ is shown in Figure3.7.

From our calculations it's clear that there is no C-S'fwz when 1 < f < 5. the maximum value
of C-S'fwz is 10.7199for B = 5.48,and 8 = 2.

If CS¢y,, > 0 then( Mean > Mode) and the pdf of DWIWD is skewed to the right when
(Mean = Mode) see table 3-2.

If CS,,,_=0 then the shape of the pdf is symmetrical when (Mean = Mode).

Where C wa2=3 then the shape of the pdf is become like Normal pdf, and it is more peaked
than the Normal pdf when the value of Cfi'fwz > 3. The shape of the pdf of (DWIWD) is flatter
than the Normal pdf when the value of CKsz < 3.

The relationship between /5 and Cwaz is shown in Figure 3.8, and the relationship between &
and CKp,,_ is shown in Figure 3.9. From our calculation it is clear that there is no CKgy,,_ when

1 < B < 6.And we find that the maximum value of CK¥,,,_is 470.8239at 8 =6.1and 8 = 2.

3. Conclusions

We can derive new( proposed) distribution named Double Weighted Inverse Weibull DWIW,
with some other useful staistical properties
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