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Abstract 
 

Nonparametric bootstrap inference in a multivariate spatial-temporal procedure is proposed to verify 
two important assumptions namely, constant multivariate characteristics across spatial locations and 

constant multivariate characteristics across time points. The bootstrap normal confidence intervals and 

type-2 p-value for the multivariate characteristics across spatial locations/time points were constructed 
for the test procedures. 

Results of the simulation studies indicate that the proposed test procedures are powerful and are 

correctly sizes. The test procedures for multivariate characteristics across spatial locations/time points 
are also robust for a wide range of data structure. 

Keywords: Nonparametric bootstrap, Spatial-temporal model, Coverage probability, Simulation. 

 

1. Introduction  

  

Classical models assume that the error terms are independent and identically distributed (IID), 

having zero mean and constant variance. In reality, this may not be true as data that represent 
aggregation of individual observations exhibit spatial and temporal dependencies.  It is said that if the 

classical models are to be used to model data with inherent spatial or temporal correlation or 

interactions, they will result to biases and lost information especially on the dependence structure.       
A spatial-temporal model is sometimes approached only from the spatial viewpoint. The essence 

of spatial analysis is that ``space matters" and what happens in one region is related to what happens in 

neighboring regions. This has been made more precise in what Tobler (1979) refers to as the First Law 

of Geography that states: "Everything is related to everything else, but closer things more so". One 
way to approach this is via the notion of spatial autocorrelation. 

Spatial dependence refers to the correlation between the same attributes at two locations. In the 

absence of spatial dependence, the distance of the two locations does not influence the joint behavior 
of attributes observed at those two locations. When spatial dependence is present (for example, 

positive correlation), then the near observations are more similar than those far apart. Drawing on time 

series in addition to spatial dependence can enhance the analysis. If the time dependencies are not 

taken into consideration, it will constitute a failure to use all the available information from the data. 
Temporal dependence means that events at one time can be influenced only by what has happened in 

the past, whereas, spatial dependence implies that events at any one point in time can be influenced by 

both the past and the future (Anselin and Bera, 1998). Spatial dependence in the data can be harnessed 
in much the same way as that of time series autocorrelation.  
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The structure of the error variance-covariance matrix associated with the estimation in a spatial-

temporal model is so complicated. The bootstrap methods however, provide a viable alternative 
(Chernick, 1999). The concept of the bootstrap method is simple and it can be used even in a complex 

dependence model and requires more flexible assumptions, as well. 

The backfitting algorithm initially proposed to estimate an additive model provides simple 
alternative to the least square or maximum likelihood-based estimation procedures (Hastie and 

Tibshirani, 1990) as cited in Barrios and Lavado (2010). Landagan and Barrios (2007) postulated and 

estimated a spatial-temporal model that treats irregularly shaped spatial units, with temporal 

observations made at equal intervals of time shown below. 
 

  (1) 

 

 
 

 

 

 
 

 

 
 

Martines (2008) proposed a procedure to estimate parameters of multivariate spatial-temporal 

model by imbedding a multivariate regression and vector autoregressive (VAR) model in backfitting 

algorithm. The multivariate spatial model at a minimum subsumed an autoregressive error process 

adopted from the work of Singh, B., et. al. (2005) given by the model: 
 

 (2) 

  

  
 (3) 

 

Following Landagan and Barrios (2007), Martines (2008) assumed constant temporal effect 

across locations, and constant spatial effect across time periods in model (3). 
Guarte (2009) proposed a nonparametric bootstrap inference procedure in a spatial-temporal 

model postulated by Landagan, and Barrios (2007) to verify assumptions (ii) and (iii), in the following 

model:   
 

 (4) 
           

Without loss of generality, Guarte (2009) assumed the regression model 
 

(5)      

                    

  
This work is on nonparametric bootstrap inferences for multivariate spatial-temporal model for 

verifying two assumptions, namely constant temporal effect across spatial locations and constant 

spatial effect across time points postulated by Martines (2008) by extending the nonparametric 
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bootstrap inferences for spatial-temporal model in the univariate case of Guarte (2009) to the case of 

multivariate as discussed in the succeding sections. 

 

The following are the specific objectives 
 

1. To develop a nonparametric bootstrap procedure for testing multivariate characteristics across 

spatial locations/time points; 
2. To determine the power of the two test procedures for a desired level of significance; 

3. To calculate the type-2 p-value of the two test procedures; and 

4. To evaluate the performance of the nonparametric bootstrap procedures for testing 

multivariate characteristics across spatial locations/time points in terms of size and power of 
the test through simulation studies. 

 

2. Methodology 
2.1. Test for Constant Multivariate Characteristics Across Spatial Locations 
 Given the spatial-temporal VAR model:  

 

(6)  
                                                                            

        (1.6)                                                                                                          (                   

In the same context as Martines (2008) assumed (i) constant multivariate characteristics across 
spatial locations and (ii) constant multivariate characteristics across time points were assumed. To 

verify the assumptions, the bivariate VAR(1) series characterized by the parameter     

 

 

with innovations from normal distribution  with   and were used. The bivariate VAR(1) 
series are characterized by, 

   

(7)  
       

Considering the spatial locations, the bivariate VAR(1) series are available for N locations each 

with T time points.  The following hypotheses were tested: 

 
 

 

Algorithm 1: 
Given these N time series each with 2 dimensions, the following procedures are used in testing 

the multivariate characteristics across spatial locations: 

 
1. For each location i estimate VAR(1) process on a bivariate 

specification given by         

 
           (8)  

    

           Conditioining on            the empirical distribution of the centered 

residuals:  
    

 (9)  

 
2. Using the residuals (9), generate k bootstrap samples for each spatial location i of sample n. 
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3. For every bootstrap sample in Step 2, generate k time series for every ith spatial location 

using the estimated model in Step 1.  

4. Estimate the bivariate VAR(1) model for every simulated time series in  Step 3, then take 

the determinant of these bivariate VAR(1) coefficients  matrix. Thus, there will be k 

determinants for k bootstrap samples.  

 

 (10)  

  
 

 

 

where j = 1, 2, · · · , k (bootstrap samples) and ∗= bootstrap estimates,  
 

 

 
 

 

 
 

 
 

 

 (11) 

 

 

2.2. Test for Constant Multivariate Characteristics Across Time Points 
Using VAR(1) process of the bivariate specification in equation (8), the data were transformed 

into cross-sectional for testing the constant multivariate characteristics across time points. The 

multivariate linear regression model was assumed to be the appropriate model for the cross-sectional 

data. By extending the univariate model of Guarte (2009), the values of the response variable wase 
first translated in location and scale. The covariate was computed as, 

 

 
(12)  

 

 
 



Asaad, A. S and Barrios, E. B. 

 

471 
 

                                                                                                                               

 

 

 
 

 

 
 

 

 

 
Now, using the covariates (12), the response variable was simulated using the regression model below, 

 

  

(13)  
 

 

 

 

 

 

Algorithm 2: 
Model (13) is used in the following steps for test constant multivariate characteristics across time 

points: 

 
 

 

 
 

     

 

                    (14) 

     

 

i = j, implies k = N bootstrap samples. The regression bootstrap procedure above is called 
case resampling. 

 

 
 
 

 

 
 

  

         (15)   
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    where j = 1, 2, · · · , k (bootstrap samples) and ∗= bootstrap estimates, 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

    (16)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. Calculation of the Power of the Test 
The power of the test is based on the classical case, but this time the bootstrap estimator is used. 

 

Algorithm 3: 
Power of the test is computed after Step 7 in test for constant multivariate characteristics across 

spatial locationsand after Step 6 in the case of testing for constant multivariate characteristics across 

time points. The lower and upper limits of the 95% confidence interval were used to compute their 

corresponding y-scores. The y-score of the LL (lower limit is, 
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And y-scores for the UL (upper limit), 

 

 

 
  

(18)  
                                                                                                                                                            

  

 

  

 Then, β is,                    
 

(19)  

 

And thus the power of the test is, 
 

(20)  

                    

 

2.4. Calculation of Type-2 P-Value 
Given the time series/cross-sectional data in each location/time point, we test the following 

hypotheses: 

 

 
 

 

 
 

 

 

 
The type-2 p-value (Singh and Berk, 1994) is computed as 

 

(21)   

        

 

 

 

 

 

 

 

Algorithm 4: 

The type-2 p-value was computed after Step 7 of test for constant multivariate characteristics 

across spatial locations and Step 6 of test for constant multivariate characteristics across time points. 
The empirical distribution of the k determinants from the k bootstrap samples, where k determinants is  

 

 
 

the T
n

*
 and q

o
 is obtained in Step 7 for multivariate characteristics across spatial locations, and Step 6 

for multivariate characteristics across time points, which is the assumed true value. 
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3. Results of Simulation Studies 

 

Simulation is a numerical method for performing studies on a computer. Simulation studies 
involving random sampling from probability distributions are commonly used to study properties of 

statistical methods which cannot otherwise be easily evaluated. Here, R software with the following 

packages: mvtnorm - multivariate t and normal distributions, boot - bootstrap functions and vars - 

vector autoregressive modelling was utilized. 
Four dataset were simulated, of which, two are from balanced datasets N=T=100 and N=T=20 

and the other two sets are from unbalanced datasets N=70, T=50 and N=40, T=35. To evaluate the test 

of constant multivariate characteristics across spatial locations, consider the stationary VAR(1) with 
simplest bivariate specification model given below: 

 

 
    (22)     

 

 

 
Algorithms 1, 3 and 4 were utilized for the needed results. The simulation process has no 

intercept term for the model. 

The same algorithms were applied also to the case of non-constant multivariate characteristics 
across spatial locations. Four datasets were generated using (22) model with the first five spatial 

locations having the same multivariate characteristics for each dataset. In each dataset generated, there 

were four sets of results and each has either 6 or 7 cases. The first set has a coefficient, Q11 that 
changes with an increment of 0.10 while holding all other coefficients unchanged, the second set, with 

a coefficient, Q12 that changes with also the same increment of 0.10 while all other coefficients were 

held fixed. The third set with coefficient Q21 likewise changes with an increment of 0.10 and the last, 

with coefficient of Q22 also changes with similar increment of 0.10. Another group of four datasets 
have four sets in each dataset with the same scenario as before but this time, with the first eight spatial 

locations having the same multivariate characteristics across spatial locations. 

In large balanced dataset, N=T=100, the multivariate characteristics estimates, represented by the 
determinant of the bivariate VAR(1) coefficients matrix vary across locations from as low as 0.224 to 

as high as 0.615. The histogram (res1$par.det) in Figure 1 and the corresponding Shapiro-Wilk 

normality test of W = 0.9927 with p-value=0.8686 indicate that the distribution of these estimates is 

significantly normal with mean and median of 0.414 and 0.407, respectively. 
From Table 1, the null hypothesis of constant multivariate characteristics across spatial locations 

was not rejected with 95% coverage probability. Of the 100 bootstrap normal confidence intervals that 

were constructed, only four (4) failed to contain both the mean and median. However, using type-2 p-
value, five (5) confidence intervals constructed had less than 0.05 level of significance for the mean 

determinant and four (4) confidence intervals had less than 0.05 level of significance for the median. 

This could mean that even if the population of spatial locations was homogeneous with respect to the 
multivariate characteristics, sampling variation will induce some spatial locations to be different in the 

sample with respect to multivariate characteristics. 

The two methods completely agree not to reject the null hypothesis with 95% coverage 

probability based on both the mean and/or median. Thus, we can conclude that the testing procedure 
was able to correctly identify the true situation and is properly sized for this dataset. Not rejecting the 

null hypothesis of constant multivariate characteristics across spatial locations with 95% coverage 

probability actually captured the fact that not more than five (5) spatial locations differ in multivariate 
characteristics. There was a correct inference for this large balanced data, (N,T)=(100,100) using both 

bootstrap normal confidence intervals with 95% coverage probability and type-2 p-value. 
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Figure-1. Histogram of the Multivariate Characteristics Across Spatial Locations for Large and Small 

Balanced/Unbalanced Data 

 

 

 

 

 

 

 

 

 

 

 

 

Table-1. Multivariate Characteristics Across Spatial Locations for Stationary Bivariate VAR(1) 
Model for Large/ Small Balanced/Unbalanced Data and 95% Coverage Probability 

 

Sample size 

 

Criterion 

 

Value 

95% Coverage Probability 

Bootstrap Type-2 p-value 

(N,T) = 

(100,100) 

Mean 0.414 Do not reject Ho 

(4) 

Do not reject Ho (5) 

Median 0.407 Do not reject Ho 

(4) 

Do not reject Ho (4) 

(N,T) = 

(70,50) 

Mean 0.377 Do not reject Ho 

(2) 

Reject Ho (4) 

Median 0.386 Do not reject Ho 

(3) 

Reject Ho (4) 

(N,T) = 

(40,35) 

Mean 0.344 Do not reject Ho 

(1) 

Do not reject Ho (1) 

Median 0.340 Do not reject Ho 

(1) 

Do not reject Ho (1) 

(N,T) = 

(40,35) 

Mean 0.320 Do not reject Ho 

(0) 

Do not reject Ho (0) 

Median 0.348 Do not reject Ho 

(0) 

Reject Ho (2) 

Note: Figures in parentheses are the number of normal bootstrap confidence intervals that failed to contain the mean/or 
median and the number of type-2 p-value less than 0.05, respectively 

 

 

 
For large unbalanced dataset, N=70, T=50, the multivariate characteristics estimates vary across 

spatial locations, ranging from 0.093 to 0.591. The histogram (res2$par.det) in Figure 1 and the 

Shapiro-Wilk normality test of W = 0.9798 with p-value = 0.3193, indicate that the distribution of 
these estimates is normal with mean of 0.377 and median of 0.386. The null hypothesis of constant 

multivariate characteristics across 70 spatial locations based on both the mean and/or median is not 

rejected with 95% coverage probability using the normal bootstrap normal confidence intervals. Of the 

70 bootstrap confidence intervals constructed, only two (2) failed to contain the mean and three (3) 
failed to contain the median.  Again, due to sampling variation, this leads to a few spatial locations 

coming out different with respect to multivariate characteristics in the said sample. We may therefore 
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conclude that the test procedure was able to correctly identify the true situation and is properly sized 

for this dataset by using bootstrap normal confidence intervals. This means not rejecting the null 
hypothesis of constant multivariate characteristics across spatial locations with 95% coverage 

probability actually captured the fact that not more than four (4) spatial locations differ in multivariate 

characteristics effect. But using type-2 p-value, with the mean, there were two additional rejections of 
the null hypothesis for a given (H0: θˆ = θ) and one more rejection region of the null hypothesis in the 

case of median. While in spatial location, sixteen was declared homogeneous using the bootstrap 

normal confidence interval, the result was opposite when using the type-2 p-value (i.e., spatial location 

sixteen was not declared different from the rest). The two additional spatial locations, 44 and 52, that 
were declared homogeneous using bootstrap normal confidence interval were found in the opposite 

using type-2 p-value. Consequently, there were four (4) confidence intervals constructed with less than 

0.05 level of significance for both mean and median. The findings, however, contradict when using the 
bootstrap normal confidence intervals. Clearly, with 95% coverage probability, the two methods have 

total disagreement on the results both for the mean and/or median estimates. But either method, by 

chance, may agree that the multivariate characteristics is constant for this case with 99% coverage 
probability for both the mean/or median since the confidence interval for 99% coverage probability is 

wider. 

For small unbalanced dataset, N=40, T=35, the multivariate characteristics estimates vary across 

spatial locations from as low as 0.082 to as high as 0.527. The histogram (res3$par.det) in Figure 1 and 
the corresponding Shapiro-Wilk normality test of W = 0.9568, p-value = 0.13, imply that the 

distribution of these estimates is normal with mean of 0.344 and median of 0.340. The null hypothesis 

of constant multivariate characteristics effect across spatial locations was not rejected with 95% 
coverage probability. Of the 40 bootstrap confidence intervals constructed, only one (1) failed to 

contain both the mean and median estimates. In like manner, using type-2 p-value, only one (1) 

confidence interval constructed had less than 0.05 level of significance for both mean and median 

estimates. The two methods were in perfect agreement of not to reject the null hypothesis with 95% 
coverage probability based on both the mean and/or median. Thus, we can conclude that the test 

procedure was able to correctly identify the true situation and is properly sized for this dataset. That is, 

not rejecting the null hypothesis of constant multivariate characteristics across spatial locations with 
95% coverage probability actually captured the fact that not more than two (2) spatial locations differ 

in multivariate characteristics. 

For small balanced dataset, N=20, T=20, the multivariate characteristics parameter estimates 
vary across locations, from as low as 0.013 to as high as 0.648. The histogram (res4$par.det) in Figure 

1 and the corresponding Shapiro-Wilk normality test of W = 0.9582 (Table 1) having p-value = 0.5079 

mean that the distribution of these estimates is normal with mean of 0.320 and median of 0.348. The 

null hypothesis of constant multivariate characteristics across spatial locations was not rejected with 
95% coverage probability. Of the 20 confidence intervals constructed, none failed to contain both the 

mean and median estimates using the bootstrap normal confidence intervals. However, when using 

type-2 p-value, two (2) confidence intervals constructed are with less than 0.05 level of significance 
for median estimate. Hence, there was a total agreement between using the bootstrap normal 

confidence interval and the type-2 p-value, based on the mean estimate. But, based on the median 

estimate, the two methods were in disagreement. We may therefore conclude that the testing procedure 
was able to correctly identify the true situation and is properly sized for this dataset. That is, not 

rejecting the null hypothesis of constant multivariate characteristics across spatial locations with 95% 

coverage probability actually captured the fact that not more than one (1) spatial location differ in 

multivariate characteristics, which in this case, there was none. 
 

 

 
 

 

 

 
 

 

 



Asaad, A. S and Barrios, E. B. 

 

477 
 

Figure-2. Power Curve with 5% Different Multivariate Characteristics Across Spatial Locations for 

Large Balanced Dataset                            

 

                                               
 

 

 

 

 

 

   

   

 

 

 
 

 

 

Figure-3. Power Curve with 5% Different Multivariate Characteristics Across Spatial Locations for 
Large Unbalanced Dataset 
 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
The power plots in Figure 2, show the estimated maximum power with 5% different multivariate 

characteristics across spatial locations for large balanced dataset. The horizontal axis represents the 

parameter value (Qii) with an increment of 0.10 and the vertical axis represents the estimated 
maximum power based on either the mean (denoted by black line) or the median (denoted by red line). 

The estimated maximum power of the test procedure is high on the diagonal of VAR(1) coefficient 

matrix (set1_1 and set1_4) compared to that of the off-diagonal (set1_2) and set1_3). In general, the 

estimated maximum power is highest for the farthest alternative parameter and less than 0.80 when 
closer to the true parameter values. The power plots for large unbalanced dataset are shown in Figure 



Handbook on the Emerging Trends in Scientific Research 

 

478 
 

3. As noticed, the power of the test procedure is good (high) in all four sets. For both large 

balanced/unbalanced data, it is observed that the estimated maximum power based on the median is 
slightly higher than based on the mean and the fluctuation of the estimated power plots based on the 

mean and median are almost identical. 

 
Figure- 4. Power Curve with 5% Different  Multivariate Characteristics Across Spatial Locations for 

Small Unbalanced Dataset                                                                       
  

 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 
Figure-5. Power Curve with 5% Different Multivariate Characteristics Across Spatial Locations for 

Small Balanced Dataset 
  

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
The same stationary stationary bivariate VAR(1) mentioned above was used to evaluate the test 

of constant multivariate characteristics across time points. The datasets were then transformed into 

cross-sectional and the multivariate regrssion model was assumed to be the appropriate model for the 
cross-sectional data. In the case of the non-constant multivariate characteristics across time points, 
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four datasets were generated with the first 5% time points having the same multivariate characteristics. 

In each dataset generated, there were four sets of results and each has either 6 or 7 cases. The first set 

has a coefficient, β11 that changes with an increment of 0.10. The second set, with a coefficient, β12 that 

changes with also the same increment of 0.10. The third set with coefficient β21 changes with an 
increment of 0.10, and the last, with coefficient of β22 also changes with similar increment of 0.10. 

The distributions of the multivariate characteristics across time points for large and small 

balanced/unbalanced data were significantly normal (refer to Figure 6). For large balanced data, across 
the 100 time points, eight bootstrap estimators were not normal and 92 were significantly normal at 

0.05 level of significance. Of the 100 confidence intervals constructed, five (5) failed to contain both 

the mean and median estimates when using the bootstrap normal confidence interval (see Table 2). 

 
 

Figure-6. Histogram of the Multivariate Characteristics Across Time Points for Large and Small 

Balanced/Unbalanced Data 
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For large unbalanced data, of the 50 confidence intervals constructed, one (1) failed to contain 

the mean estimate, and two (2) confidence intervals failed to contain the median estimate when using 
the bootstrap normal confidence intervals. On the other hand, using type-2 p-value, we arrived at the 

same findings, except for large unbalanced data, wherein the two methods are in total disagreement, 

based on the median estimates. The two methods completely agree not to reject the null hypothesis 
with 95% coverage probability based on both the mean and/or median. The null hypothesis of constant 

multivariate characteristics across time points was correctly not rejected with 95% coverage 

probability using both methods in all different sample sizes. 

 
 

 

The power plots in Figures 7 to 10, show the estimated maximum power with 5% different 
multivariate characteristics across time points. The estimated maximum power was high in most of the 

cases in each set of large balanced/unbalanced data, indicating that the proposed procedure was 

powerful (see Figures 7 and 8).  
 

 

Table-2. Multivariate Characteristics Across Time Points for Stationary Bivariate VAR(1) Model for 

Large and Small Balanced/ Unbalanced Data and 95% Coverage Probability. 

 

Sample size 

 

Criterion 

 

Value 

95% Coverage Probability 

Bootstrap Type-2 p-value 

(N,T) = 
(100,100) 

Mean 0.442 Do not reject Ho (5) Do not reject Ho (4) 

Median 0.441 Do not reject Ho (5) Do not reject Ho (4) 

(N,T) = (70,50) Mean 0.429 Do not reject Ho (1) Do not reject Ho (3) 

Median 0.415 Do not reject Ho (2) Reject Ho (5) 

(N,T) = (40,35) Mean 0.445 Do not reject Ho (2) Do not reject Ho (2) 

Median 0.439 Do not reject Ho (1) Do not reject Ho (2) 

(N,T) = (40,35) Mean 0.463 Do not reject Ho (1) Do not reject Ho (1) 

Median 0.447 Do not reject Ho (1) Reject Ho (1) 
 

 
 Note: Figures in parentheses are the number of normal bootstrap confidence intervals that failed to contain the    
mean/or median and the number of type-2 p-value less than 0.05, respectively 
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Figure-7.  Power Curve with 5% Different Multivariate  Characteristics Across Time Points for Large 

Balanced Data                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure-8. Power Curve with 5% Different Multivariate  Characteristics Across Time Points for Large  
Unbalanced Data 
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4. Summay of Findings 
 

1. The test procedures were able to correctly identify the true behaviour of the multivariate 
characteristics across spatial locations/time points, i.e., null hypothesis of constant multivariate 

characteristics across spatial locations/time points was correctly not rejected with 95% coverage 

probability. 

2. The power of the test procedure for multivariate characteristics across spatial locations was high 
for large balanced/unbalanced datasets, indicating that the proposed procedure was powerful.  

3. The estimated maximum power of the test procedure for multivariate characteristics across time 

points was high as well for large balanced/ unbalanced datasets indicating that the proposed test 
procedure was very good. It was noticed that the estimated maximum power based on the 

median was slightly higher than based on the mean for almost all sets in each type of dataset and 

the estimated power plots fluctuation based on mean and median are almost the same.  
4. The estimated maximum power of the test procedures for small bal- anced/unbalanced datasets 

was low, and so, less powerful. The pattern of the fluctuation of the estimated power plots based 

on the mean and the median were erratic.  

 

5. Conclusions 
 

The simplest VAR of order 1 with bivariate specification modelling effort is an excellent starting 

point or good foundation for the development of multivariate spatial-temporal models. We have also 
demonstrated the effectiveness of our proposed test procedures on simulated datasets that accurately 

revealed the true situation. We have demonstrated that including both spatial and temporal in 

multivariate model, although difficult, is feasible. 

The test procedures were able to correctly identify the true situation and are properly sized for 
large balanced/unbalanced data and are powerful, and so, the tests are robust. However, for small 

balanced/unbalanced data, the tests were not robust, because of their being less powerful. 

 

6. Recommendations 
 

1. Use the two testing procedures to actual data that exhibit stationary bivariate VAR(1) series in 
order to fully appreciate the meaningful contributions of the proposed testing procedures;  

2. Compare the performance of the testing procedures by estimating the autoregressive coefficient 

matrix from the least squares estimator and that from maximum likelihood estimator; and  
3.  Extend the theory of bivariate VAR(1) model to higher order p, with higher dimensions of the 

autoregressive coefficient matrix.  
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