International Journal of Sustainable Energy and Environmental Research

Published by: Conscientia Beam
Online ISSN: 2306-6253
Print ISSN: 2312-5764
Quick Submission    Login/Submit/Track

No. 1

A Comparative Study of Physical and Chemical Parameters in Sistan and Baluchistan University Wastewater and Its Re-Use of Wastewater

Pages: 6-11
Find References

Finding References


A Comparative Study of Physical and Chemical Parameters in Sistan and Baluchistan University Wastewater and Its Re-Use of Wastewater

Search :
Google Scholor
Search :
Microsoft Academic Search
Cite

Marziyeh Galavi , Eddris Bazrafshan , Ferdos Cord Mostafapor , Sahel Pakzadtoochaei

Export to    BibTeX   |   EndNote   |   RIS

  1. Al – Shammiri M. and act., 2005. Waste water quality and reuse in irrigation in kuwait using microfiltration technology in treatments , desalination. 185 213 – 225.
  2. Bixio . D. and act., 2006. Wastewater reuse in europe , desalination 187: 89 – 101 
  3. Bixio . D. and act., 2008. Water reclamation ana reuse : Implementation and management issues , desalination 218: 13 – 23
  4. Bouwer H., 1994. Irrigatin and global water outlook.Agricultural water management Elsevier Sci(25): 221-231.
  5. Brady N., 1990. The nature and properties of soils .L.Th edition .Macmillan publishing. Co.
  6. Cairccross .S., 2005. A review of policy and standards for waste water reuse in agriculture A latin American perspective ,Tc .sk. Part II,London school of Hygiene & Tropical Medicine ,UKWEDC,Lougborough University ,UK,2005.(68).
No any video found for this article.
Marziyeh Galavi , Eddris Bazrafshan , Ferdos Cord Mostafapor , Sahel Pakzadtoochaei (2012). A Comparative Study of Physical and Chemical Parameters in Sistan and Baluchistan University Wastewater and Its Re-Use of Wastewater. International Journal of Sustainable Energy and Environmental Research, 1(1): 6-11. DOI:
Following the university???s needs and current draughts, the university decided to establish a waste water treatment plant for proper management of its exotic waters. The recycled water of the plant is used for irrigation of its green space as well as providing water for its garden plants through drip irrigation method. The tests were performed during a 6- month period using input- output measuring devices. These tests were according to standard methods book. The photometer, spectrophotometer, and atomic absorption machines were applied for measuring cations and anions and heavy metals, respectively. The test results were analyzed by EXCEL/SPSS software. Finally, the acquired data were compared with the standards of EPA and FAO???s and it was concluded that they are in accordance with these standards and proper for irrigation of the green space and the greenhouse products.

Contribution/ Originality

Supercapacitors Based on Activated Carbon and Polymer Electrolyte

Pages: 1-5
Find References

Finding References


Supercapacitors Based on Activated Carbon and Polymer Electrolyte

Search :
Google Scholor
Search :
Microsoft Academic Search
Cite

Citation: 7

M. A. Hashim , Lawal Saadu , Karsono A. Dasuki

Export to    BibTeX   |   EndNote   |   RIS

  1. Orita., K. Kamijima. and M. Yoshida., 2010. Allyl-functionalized ionic liquids as electrolytes for electric double-layer ca-pacitors. Journal of Power Sources, 195: 7471–7479.
  2. Balducci., W.A. Henderson., M. Mastragostino., S. Pas-serini., P. Simon. and F. Soav., 2005. Cycling stability of a hybrid activated carbon//poly(3-methylthiophene) supercapacitor with n-butyl-n-methylpyrrolidinium bis (trifluoromethanesul-fonyl)imide ionic liquid as electrolyte. Electrochimica Acta, 50: 2233–2237.
  3. Lewandowski. and M. Galinski., 2007. And theoretical limits for electrochemical double-layer capacitors. Journal of Power Sources, 173: 822–828.
  4. S. Graeme., J. W. Gregory. and G. P. Anthony., 2009. Mathe-matical functions for optimisation of conducting poly-mer/activated carbon asymmetric supercapacitors. Journal of Power Sources, 186: 216–223.
  5. Ganesh., D. Kalpana. and N. G. Renganathan., 2008. Acrylamide based proton conducting polymer gel electrolyte for elec-tric double layer capacitors. Ionics, 14: 339–343.
  6. Rathod M., Vijay N., Islam R., Kannan  U., Kharul K. and Sreekumar P., 2009. Vijayamohanan, design of an ‘‘all sol-id-state’’ supercapacitor based on phosphoric acid doped polybenzimidazole (pbi) electrolyte. J Appl Electrochem, 39: 1097–1103.
  7. H. Yamada., I. Moriguchi. and T. Kudo., 2008. Electric double layer capacitance on hierarchical porous carbons in an organic electrolyte. Journal of Power Sources, 175: 651–656.
  8. M. Inagakia H. and Konnoa O., 2010. Tanaikeb, carbon materials for electrochemical capacitors, . Journal of Power Source, 195: 7880–7903.
  9. M. Jayalakshm N., Venugopal K., P Raja M. and M. Rao., 2006. Nano sno2–al2o3 mixed oxide and sno2–al2o3–carbon composite oxides as new and novel electrodes for supercapacitor applications. Journal of Power Sources, 158: 1538–1543.
  10. M. Lazzari., F. Soavi. and M. Mastragostino., 2008. High voltage, asymmetric edlcs based on xerogel carbon and hydro-phobic il electrolytes. Journal of Power Sources, 178: 490–496.
  11. M. Mastragostino. and F. Soavi., 2007. Strategies for high-performance supercapacitors for hev. Journal of Power Sources. , 174: 89–93.
  12. P. Jampani A., Manivannan P. and N. Kumta., 2010. Advancing the supercapacitor and technology  frontier for improving power quality. Electrochemical society interface: 57-56.
  13. T. C. Girija. and M.V. Sangaranarayanan., 2006. Analysis of polya-niline-based nickel electrodes for electrochemical super-capacitors. Journal of Power Sources, 156: 705–711.
  14. X. Liu. and P.G. Pickup., 2008. Ru oxide supercapacitors with high loadings and high power and energy densities. Journal of Power Sources 176: 410–416.
  15. X. Zhaoa H., Tianb M., Zhub K., Tia J.J., Wang F., Kang R.A. and Outlaw., 2009. Carbon nanosheets as the electrode material in supercapacitors. Journal of Power Sources, 94: 1208–1212.
No any video found for this article.
M. A. Hashim , Lawal Saadu , Karsono A. Dasuki (2012). Supercapacitors Based on Activated Carbon and Polymer Electrolyte. International Journal of Sustainable Energy and Environmental Research, 1(1): 1-5. DOI:
The supercapacitors are characterized by  faster discharge rate and easy for maintenance. Their demand is predicted to be most extensive in frequency regulation applications. The other area for significant growth is in regenerative braking for grid, connected light rail systems. In this research we fabricated a Supercapacitor using a commercially prepared Activated carbon which was sized to an area of 1 cm2 and combinations of two electrolytes solutions; polymer electrolyte polyvinyl alcohol (PVA) and Phosphoric acid (H3PO4) assembled in an innovative supercacitor tester. The result indicates a relatively high efficiency of about 90 % and also exhibited long cyclability of life time under different voltage windows.

Contribution/ Originality